| 研究生: |
高嘉梅 Kao, Chia-Mei |
|---|---|
| 論文名稱: |
隱藏馬可夫模式序率模擬月流量序列之影響因子探討 Exploring influencing factors on HMM-based monthly streamflow stochastic simulation |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 隱藏馬可夫模式 、影響因子 、序率模擬 、月流量序列 |
| 外文關鍵詞: | hidden Markov model, influencing factors, stochastic simulation, monthly streamflow |
| 相關次數: | 點閱:67 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區年平均降雨量約為世界平均值的2.6倍,但由於地狹人稠以及降雨空間與時間分布不均,且因氣候變遷的影響,極端暴雨及乾旱的頻率和強度都有明顯的增加,因此水資源管理顯得更加重要。透過具歷史資料統計特性之流量序率模擬模式,可繁衍多組水文時間序列,將繁衍序列輸入至水資源系統模擬模式中,得以評估系統設計、水庫營運決策的性能和可靠性。因此本研究使用隱藏馬可夫模式(Hidden Markov Model)進行月流量序率模擬,探討四種影響因子包括資料轉換、狀態數、狀態決定方式以及繁衍組數,對序率模擬結果準確性的影響。本文選用位於臺灣北部區域蘭陽溪流域的蘭陽大橋測站1950到2021年的觀測月流量資料以及南部區域高屏溪流域中的荖濃測站1959到2008年的觀測月流量資料為分析案例,分別將原始月流量資料與以對數轉換或Box-Cox轉換過之月流量資料建立隱藏馬可夫模式,改變不同狀態數、狀態決定方式及繁衍組數以繁衍與實際觀測流量等長之月流量序列。繁衍流量則以百分誤差(%difference)和相對平均絕對誤差(relative mean absolute difference, RMAD)分析與實際流量之差異程度和誤差改變率,選擇最具影響力之影響因子。研究結果顯示,蘭陽大橋測站以及荖濃測站影響因子由大至小的排序皆為資料處理、狀態數、狀態決定方式、繁衍組數。
Due to the dense population, spatio-temporal uneven distributed rainfall, and the reduced reliability of water supply caused by global climate change, the frequency and intensity of extreme events such as floods and droughts have significantly increased. Consequently, water resource management has become increasingly important. Stochastic simulation model can be used to generate streamflow series, which possesses the statistical properties of historical data. The reproduced streamflow series provides alternative data instead of historical data to evaluate performance and reliability of water-resources systems. This study employs a Hidden Markov Model (HMM) for simulating monthly streamflow sequences and investigates four influencing factors: data processing, number of states, state determination method, and number of simulated sequences, on the accuracy of the simulation results. Monthly streamflow data from the LAN-YANG BRIDGE gauge station and the LAO-NUNG gauge station in Taiwan are selected as case studies. The simulated streamflow is then compared to the observed streamflow using the percentage difference (% difference) and relative mean absolute difference (RMAD) to analyze the degree of differences and error change rate. The results of this study indicate that the order of the influencing factors, from most to least, are data processing, number of states, state determination method, and number of generated sequences for both the Lan-Yang Bridge and Lao-Nong gauge stations.
1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
2. Akintug, B., & Rasmussen, P. (2005). A Markov switching model for annual hydrologic time series. Water Resources Research, 41(9), W09424.
3. Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3(1), 1-8.
4. Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41(1), 164-171.
5. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.
6. Box, E., Jenkins, G, M., Reinsel, G, C., & Ljung, G, M. (1976). Time series analysis: forecasting and control. San Francisco: Holden Bay.
7. Bracken, C., Rajagopalan, B., & Zagona, E. (2014). A hidden Markov model combined with climate indices for multidecadal streamflow simulation. Water Resources Research, 50(10), 7836-7846.
8. Celeux, G., & Durand, J.-B. (2008). Selecting hidden Markov model state number with cross-validated likelihood. Computational Statistics, 23, 541-564.
9. Chambers, D. W., Baglivo, J. A., Ebel, J. E., & Kafka, A. L. (2012). Earthquake forecasting using hidden Markov models. Pure and Applied Geophysics, 169, 625-639.
10. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.
11. Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press.
12. Erkyihun, S. T., Rajagopalan, B., Zagona, E., Lall, U., & Nowak, K. (2016). Wavelet‐based time series bootstrap model for multidecadal streamflow simulation using climate indicators. Water Resources Research, 52(5), 4061-4077.
13. Erkyihun, S. T., Zagona, E., & Rajagopalan, B. (2017). Wavelet and hidden Markov-based stochastic simulation methods comparison on Colorado River streamflow. Journal of Hydrologic Engineering, 22(9), 04017033.
14. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543.
15. Hughes, J. P., & Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535-1546.
16. Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Journal of the Royal Statistical Society Series C: Applied Statistics, 48(1), 15-30.
17. Jougla, R., & Leconte, R. (2022). Short-term hydrological forecast using artificial neural network models with different combinations and spatial representations of hydrometeorological inputs. Water, 14(4), 552.
18. Kan, G., He, X., Ding, L., Li, J., Hong, Y., Ren, M., Lei, T., Liang, K., Zuo, D., & Huang, P. (2017). Daily streamflow simulation based on the improved machine learning method. Tecnología y Ciencias del Agua, 8(2), 51-60.
19. Khadr, M. (2016). Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia). Ain Shams Engineering Journal 7, 47-56.
20. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86.
21. Mares, C., Mares, I., Huebener, H., Mihailescu, M., Cubasch, U., & Stanciu, P. (2014). A hidden Markov model applied to the daily spring precipitation over the Danube basin. Advances in Meteorology, 2014.
22. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
23. Nguyen, N. (2018). Hidden Markov model for stock trading. International Journal of Financial Studies, 6(2), 36.
24. Pender, D., Patidar, S., Pender, G., & Haynes, H. (2016). Stochastic simulation of daily streamflow sequences using a hidden Markov model. Hydrology Research, 47(1), 75-88.
25. Porto, V. C., de Souza Filho, F. d. A., Carvalho, T. M. N., de Carvalho Studart, T. M., & Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226.
26. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
27. Rabiner, L. R., Levinson, S. E., & Sondhi, M. M. (1983). On the application of vector quantization and hidden Markov models to speaker‐independent, isolated word recognition. Bell System Technical Journal, 62(4), 1075-1105.
28. Salas, J., & Obeysekera, J. (1982). ARMA model identification of hydrologic time series. Water Resources Research, 18(4), 1011-1021.
29. Stoner, O., & Economou, T. (2020). An advanced hidden Markov model for hourly rainfall time series. Computational Statistics & Data Analysis, 152, 107045.
30. Thyer, M., & Kuczera, G. (2000). Modeling long‐term persistence in hydroclimatic time series using a hidden state Markov Model. Water Resources Research, 36(11), 3301-3310.
31. Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269.
32. Wang, H., Wang, C., Lin, X., & Kang, J. (2014). An improved ARIMA model for precipitation simulations. Nonlinear Processes in Geophysics, 21(6), 1159-1168.
33. Zhao, Q., & Cai, X. (2020). Deriving representative reservoir operation rules using a hidden Markov-decision tree model. Advances in Water Resources, 146, 103753.
34. Zhu, S., Luo, X., Chen, S., Xu, Z., Zhang, H., & Xiao, Z. (2020). Improved hidden Markov model incorporated with copula for probabilistic seasonal drought forecasting. Journal of Hydrologic Engineering, 25(6), 04020019.
35. Zucchini, W., & Guttorp, P. (1991). A hidden Markov model for space‐time precipitation. Water Resources Research, 27(8), 1917-1923.
36. 中央研究院環境變遷研究中心、國家災害防救科技中心、交通部中央氣象局、科技部,IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告,2021