| 研究生: |
鄭融徽 Jheng, Rong-Huei |
|---|---|
| 論文名稱: |
複數空間下的氨分子量子運動軌跡 Ammonia Molecular Quantum Motion in Complex Space |
| 指導教授: |
楊憲東
Yang, C.D. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 量子軌跡 、氨分子 、複數空間 |
| 外文關鍵詞: | Quantum Motion, Ammonia, Complex Space |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在量子力學中,只能從粒子波函數之機率分佈來說明粒子可能出現的位置,而無法得到粒子的真實運動軌跡。在本論文中,利用複數力學之架構,將古典位勢能Rosen-Morse Potential 代入複數力學中,可以產生(Hamilton-jacobi) H-J 方程式獲得氨分子在複數空間下之運動軌跡。將古典位勢能加上複數力學之量子位勢能(quantum potential)後所產生之總位勢能才是粒子所真實遭遇到的真正位勢能,此總位勢能得以合理解釋粒子的機率分佈。本論文將Rosen-Morse Potential應用至氮原子在氨分子中所受之雙最低點位勢,由氮原子在複數空間下之運動軌跡,求出其穿隧範圍及振動頻率,並與實驗所得之氨分子振動頻率作比較。
In quantum mechanics, particle’s motion can only described by probability density function; there is no related equation of motion that can be solved to find the particle’s trajectory. In this thesis, the Rosen-Morse (R-M) potential is studied in the framework of complex mechanics and the Hamilton equations of motion are derived to find the ammonia molecular quantum motion in complex space. The summation of the R-M potential and the quantum potential form the total potential that governs the quantum motion and explains the probability distribution of ammonia molecules. There are two equilibrium positions for the nitrogen atom in the ammonia molecule. The vibration of the nitrogen atom about its equilibrium positions are analyzed in terms of its trajectories solved from the Hamilton equations of motion. The vibration periods are computed by residue theorem and compared with the experimental measurement.
[1] C. D. Yang, “Quantum dynamics of hydrogen atom in complex space,” Ann. Phys. 319, 399-443, 2005
[2] C. D. Yang, “Wave-particle duality in complex space,” Ann. Phys. 319, 444-470, 2005
[3] C. D. Yang, “Modeling quantum harmonic oscillator in complex domain,” Chaos, Solitons and Fractals 30, 342-362, 2006
[4] C. D. Yang, “Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom,” Ann. Phys. 321, 2876-2926, 2006
[5] N. Rosen and Philip M. Morse, “On the Vibrations of Polyatomic Molecules,” Physical Review vol.42 pp.210-217, 1932
[6] Peter Atkins and Ronald Friedman, “Molecular Quantum Mechanics,” Oxford, 2005
[7] Jasprit Singh, “Quantum Mechanics: Fundamentals and Applications to Technology,” Wiley. Interscience, 1996
[8] 曾謹言、錢伯初,“量子力學專題討論(上)”,凡異出版社,1993
[9] B.Gerlach and M. A. Smondyrev, “Excitons and Polarons in Quantum Wells”
[10] C. B. Compean and M. Kirchbach, “The Quantum Mechanics Problem of the Schrödinger Equation with the Trigonometric Rosen-Morse Potential”
[11] D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I,” Physical Review 85,166, 1952; “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II,” Physical Review 85,180 1952.
[12] M. D. Harmony, “Quantum Mechanical Tunneling in Chemistry,”
[13] David M. Dennison and G. E. Uhlenbeck, “The Two-Minima Problem and the Ammonia Molecule,” Physical Review vol.41 pp.313-321, 1932