簡易檢索 / 詳目顯示

研究生: 何正中
Ho, Cheng-Chung
論文名稱: 等效微機電靜電致動器之控制器設計與實驗驗証
Control System Design and Experimanetal Verification of an Equivalent MEMS Electrostatic Actuator
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 229
中文關鍵詞: 回饋線性化滑動控制電磁致動器機電整合靜電致動器Duffing非線性微機電
外文關鍵詞: feedback linearization, sliding control, duffing nonlinearity, pull-in, MEMS, mechatronics, electromagnetic actuator, electrostatic actuator
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜電致動器在微機電系統是非常重要的驅動元件,然而Pull-In現象限制了其衝程,除此之外隨著製程與結構設計越趨複雜,當致動器系統進一步微小化,系統之非線性特性及製程之不確定性導致同一批產品之微機電系統之致動特性不一致,將增加了封裝與校準的成本,故加入控制系統使靜電致動器衝程超越Pull-In之限制以及增加對系統參數之強健性有其必要性。
    本文主要針對雙鉗樑(Doubly-Clamped Beam)結構靜電致動器設計強健控制器,為了避免繁雜的微機電系統研發過程,本文提出等效系統的觀念供控制器設計與測試,等效系統以電磁致動器類比靜電致動器,並以雙鉗樑作為系統結構,應用等效系統觀念,本文將磁浮系統控制技術引入微機電靜電致動器系統,應用回饋線性化控制使致動器非線性特性線性化,再以滑動模態控制抵抗致動器不確定特性及樑結構Duffing效應,並以模擬驗証控制器性能,最後以轉換因子轉換控制器到靜電致動器系統。另外對於現回饋線性化控制器,已在所建立的等效系統作實驗驗証,完成定位及追蹤能力的測試。
    本文所提出的等效系統概念,使針對微機電靜電致動器系統設計控制器過程簡化,也更加有效率,籍由此觀念,我們得以應用磁浮系統控制技術於靜電致動器系統,以提昇微機電系統性能,並善用更強健的控制器,使微機電製程導致不確定性的影響減至最低。

    Electrostatic actuators are important driving elements for microelectromechanical systems (MEMS). However, their working range is usually limited by pull-in instability. In addition, the uncertainties and nonlinearity from fabrication and structural characteristics also make it difficulty to achieve uniform performance and therefore, increase the cost of packaging and calibration. As a result, it is important to incorporate a robust controller to increase both the dynamical range and the robustness of electrostatic actuators.
    This thesis focused on the development of feedback controller for a double-clamped beam, a common MEMS structure. In addition to the parametric uncertainty and pull-in instability, this structure also exhibits considerable Duffing nonlinearity. Therefore, increase the difficulty for control.
    However, it is not flexible to develop controllers in MEMS scale due to the difficulty of extra high bandwidth requirement and sensing available schemes. As a result, based on the analogy of system dynamics, we develop a macroscale equivalent system and utilizing electromagnetic actuators as the equivalent driving elements. A novel calibration scheme utilizing pull-in phenomenon is used to calibrate eletromagnets. Both feedback linearization and sliding controllers are designed to extend the operation range of actuators. The computer simulation indicates that with proper design, electrostatic actuators can achieve stable behavior beyond the pull-in linit. However, it is also found that the feedback linearization controller can achieve this goal only under small parametric uncertainty. On the other hand, sliding control shows more robust performance.
    The result of this thesis can be applied in two fields. First, it can be used as a basis of rapid prototyping of controller for MEMS. Second, the calibration and control schemes proposed in this thesis can be directly applied in marcoscale mechatronics applications such as magnetic suspension and precision positioning.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XIII 圖目錄 XV 符號說明 XXV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機及目的 11 1.4 本文架構 13 第二章 靜電致動器與等效系統 15 2.1 靜電致動器 15 2.1.1 基本電學 15 2.1.2 靜電致動器數學模型 17 2.2 無因次化分析及等效系統 19 2.2.1 無因次化分析 20 2.2.2 等效系統 23 2.3 電磁致動器 25 2.3.1 基本磁學 25 2.3.2 電磁致動器數學模型 29 2.4 靜電致動器與電磁致動器等效分析 32 2.4.1 等效之合理性 33 2.4.2 靜電致動器不確定性 33 2.4.3 電磁致動器不確定性 34 2.5 結論 35 第三章 等效系統分析與建立 37 3.1 電磁致動器系統概念設計 37 3.2 系統非線性特性 39 3.2.1 電磁力 39 3.2.2 Duffing效應(Duffing Effect) 40 3.3 系統參數不確定因素 42 3.4 系統建立 43 3.4.1 電磁致動器與Target 43 3.4.2 電壓轉電流放大器(Voltage-to-Current Amplifier) 44 3.4.3 雙鉗樑(Doubly Clamped Beam) 48 3.4.4 控制系統 52 3.5 雙鉗樑系統參數 54 3.6 結論 59 第四章 電磁致動器校正 61 4.1 Pull-In現象與分析 61 4.2 校正理論 66 4.2.1 固定氣隙校正理論 66 4.2.2 Pull-In校正理論 68 4.3 實驗架構建立 71 4.3.1 電磁致動器與Target製作 71 4.3.2 固定氣隙校正實驗設備 75 4.3.3 Pull-In校正實驗設備 78 4.4 Pull-In模擬分析 79 4.4.1 懸臂樑系統參數 80 4.4.2 準靜態模擬 83 4.4.3 阻尼效應 87 4.5 實驗驗証 90 4.5.1 固定氣隙校正 90 4.5.2 Pull-In校正 94 4.5.3 Pull-In校正誤差分析 97 4.6 結論 98 第五章 回饋線性化控制器設計與實現 99 5.1 回饋線性化控制理論與設計 99 5.2 PID控制器設計 103 5.3 PID結合回饋線性化控制器模擬與分析 107 5.3.1 PID結合回饋線性化控制器實現模擬 109 5.3.2 PID控制器參數特性模擬 114 5.3.3 PID結合回饋線性化控制器步階響應模擬分析 117 5.3.4 PID結合回饋線性化控制器正弦響應模擬分析 119 5.4 PID結合回饋線性化控制器實現與分析 122 5.4.1 PID結合回饋線性化控制器實現 123 5.4.2 PID控制器參數特性實驗驗証 125 5.4.3 PID結合回饋線性化控制器步階響應實驗分析 128 5.4.4 PID結合回饋線性化控制器正弦響應實驗分析 130 5.5 結論 133 第六章 滑動模態控制器設計 135 6.1 滑動模態控制理論 135 6.1.1 參考模型法(Model-Reference Approach) 136 6.1.2 滑動模態控制 138 6.1.3 滑動模態控制律 140 6.1.4 全階觀測器(Full-Order Observer) 143 6.2 滑動模態控制器設計 144 6.3 滑動模態控制系統模擬 148 6.3.1 滑動模態控制器參數特性模擬分析 149 6.3.2 滑動模態控制系統步階響應模擬分析 160 6.3.3 滑動模態控制系統正弦響應模擬分析 165 6.4 結論 169 第七章 控制器尺度轉換 171 7.1 轉換因子 171 7.2 回饋線性化控制器轉換 173 7.3 PID控制器轉換 174 7.4 滑動模態控制器轉換 177 7.5 微機電控制器實現預期之困難 182 7.6 結論 183 第八章 結論及未來工作 185 8.1 總結 185 8.2 結論 186 8.3 論文貢獻 186 8.4 未來工作 187 參考文獻 189 附錄1 實驗設備設計圖 195 附錄1.1 導螺桿移動平台設計圖 195 附錄1.2 樑夾具設計圖 197 附錄1.3 致動器外縠設計圖 198 附錄1.4 Target外縠設計圖 199 附件2 PID結合回饋線性化C語言程式 201 附錄3 滑動模態控制系統Simulink模擬模型方塊圖 221 附錄3.1 滑動模態控制系統模型方塊 221 附錄3.2 雙鉗樑等效二階系統模型方塊 222 附錄3.3 全階觀測器模型方塊 222 附錄3.4 理想模型系統模型方塊 223 附錄3.4 雙電磁致動器模型方塊 223 附錄3.5 回饋線性化控制器模型方塊 225 附錄3.6 滑動模態控制器模型方塊 226

    [1] M. Lemkin, and B. Boser, “A Micromachined Fully Differential Lateral Accelerometer,” IEEE, Custom Integrated Circuits Conference, pp. 315-318, 1996.
    [2] M. A. Lemkin, B. E. Boser, D. Auslader, and J. H. Smith, “A 3-Axis Force Balanced Accelerometer Using a Single Proof-Mass,” IEEE, 1997 International Conference on Solid-State Sensors and Actuators, pp. 1185-1188, June, 1997.
    [3] B. E. Boser, and R. T. Howe, “Surface Micromachined Accelerometers,” IEEE, Journal of Solid-State Circuits, Vol. 31, No. 3, pp. 366-375, Mar., 1996.
    [4] Van Kessel, P., L. Hornbeck, R. Meier, M. Douglass, “A MEMS-Based Projection Display,” Proc. IEEE, Vol. 86, no. 8, pp. 1687-1704, Aug., 1998.
    [5] K. S. Chen, S. M. Spearing, and N. N. Nemeth, “Structural Design of a Silicon Micro-Turbo Generator,” AIAA Journal, Vol. 39, No. 4, Apr., 2001.
    [6] I. Schiele, J. Huber, C. Evers, B. Hillerich, and F. Kozlowski, “Micromechanical Relay with Electrostatic Actuation,” IEEE, Transducer ’97, International Conference on Solid-State Sensors and Actuators, pp.1165-1168, June, 1997.
    [7] J.-J. Yao, and M. F. Chang, “ A Surface Micromachined Miniature Switch for Telecommunication Applications with Signal Frequencies from DC up to 4 GHz,” Transducers’95, The 8th International Conference on Solid-State Sensors and Actuators, pp. 384-387, June, 1995.
    [8] R. K. Gupta and S. D. Senturia, “Pull-In Time Dynamics as a Measure of Absolute Pressure,” IEEE, Journal of Microelectromechanical Systems, 1997. MEMS '97, Tenth Annual International Workshop, pp. 290 –294, 1997.
    [9] P. M. Osterberg and S. D. Senturia, “ M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,” IEEE, J. Microelectromech. Syst., Vol. 6, No. 2., pp. 107-118, June, 1997.
    [10] L. M. Castaner and S. D. Senturia, “Speed-Energy Optimization of Electrostatic Actuators Based on Pull-In,” IEEE, J. Microelectromech. Syst., Vol. 8, No. 3, pp. 290-298, Sep., 1999.
    [11] Y. Nemirovsky and O. Bochobza-Degani, “A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators,” IEEE, Journal of Microelectromechanical Systems, Vol. 10, No. 4, pp. 601-615, Dec., 2001.
    [12] J. I. Seeger and B. E. Boser, “Dynamics and Control of Parallel-Plate Actuators Beyond The Electrostatic Instability,” Transducers ’99, The 10th International Conference on Solid-State Sensors and Actuators, pp.474-477, June, 1999.
    [13] H. Toshiyoshi, W. Piyawattanametha, C.-T. Chan, and M.-C. Wu, “Linearization of Electrostatically Actuated Surface Micromachined 2-D Scanner,” IEEE, Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 205-214, June, 2001.
    [14] E. S. Hung and S. D. Senturia, “Extending the Travel Rangd of Anaog-Tuned Electrostatic Actuator,” IEEE, Journal of Microelectromechanical Systems, Vol. 8, No. 4, pp. 497-505, Dec., 1999.
    [15] K.-S. Chen, “A Spring-Dominated Regime Design of a High Load Capacity, Electromagnetcially Driven X-Y-θ Stage,” Master Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, June, 1995.
    [16] S. Mittal and C.-H. Menq, “Precision Motion Control of a Magnetic Suspension Actuator Using a Robust Nonlinear Compensation Schem,” IEEE/ASME, Transactions on Mechatronics, Vol. 2, No. 4, pp. 268-280, Dec. 1997.
    [17] S. M. Olson, “Nonlinear Conpensation of a Single Degree of Freedom Magnetic Suspension System,” Master and Bachelor Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, May, 1994.
    [18] D. L. Trumper, Sean M. Olson, and P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension System,” IEEE, Transactions on Control Systems Technology, Vol. 5, No. 4, pp. 427-438, July, 1997
    [19] T.-J. Yeh, Y.-J. Chung, and W.-C. Wu, “Sliding Control of Magnetic Bearing System,” ASME, Journal of Dynamic System, Measurement, and Control, Vol. 123, pp. 1-10, Sep., 2001.
    [20] A. E. Rundell, S. V. Drakunov, and R. A. DeCarlo, “A Sliding Mode Observer and Controller for Stabilization of Rotational Motion of a Vertical Shaft Magnetic Bearing,” IEEE, Transactions on Control Systems Technology, Vol. 4, No. 5, pp. 598-608, Sep., 1996.
    [21] H. M. Gutierrez, and P. I. Ro, “Sliding-Mode Control of a Nonlinear-Input System: Application to a Magnetically Levitated Fast-Tool Servo,” IEEE, Transactions on Industrial Electronics, Vol. 45, No. 6, pp. 921-927, Dec, 1998.
    [22] P. M. Hagelin, U. Krishnamoorthy, C. M. Arft, M. P. Heritage, and O. Solgaard, “Scalable Fiber Optic Switch Using Micromachined Mirrors,” In Proc. 10th Int. Conf. Solid-State Sensors and Actuators (Transducers ’99), Sendai, Japan, June 7-10, 2P6-2, 1999.
    [23] S. Kurth, R. Hahn, C. Kaufmann, K. Kehr, J. Mehner, and U. Wollmann, “Silicon Mirrors and Micromirror Arrays for Spatial Laser Beam Modulation,” Sensors Actuators A66, pp. 76-82, 1998.
    [24] R. A. Conant, P. M. Hagelin, U. Krishnamoorthy, and O. Solgaard, “A Raster-Scanning Full-Motion Video Display Using Polysilicon Micromachined Mirrors,” In Proc. 10th Int. Conf. On Solid-State Sensors and Actuators (Transducers ’99), Sendai, Japan, June 7-10, 2P3-2, 1999.
    [25] T. Poovey, M. Holmes, and D. Trumper, “A kinematically- coupled magnetic bearing calibration fixture,” Precision Engineering, Vol.16 No.2, pp. 99-108, Apr., 1994.
    [26] W. H. Hayt, Jr., “Engineering Electromagnetics,” McGram Hill, 1997.
    [27] H. H. Woodson and J. R. Melcher, “Electromechanical Dynamics Part I, II,” John Wiley and Sons Co., 1968.
    [28] 郝士廉,劉棟樑,“專科物理學上、下冊”,東華書局,台北市,82年。
    [29] C. M. Close and D. K. Frederick, “Modeling and Analysis of Dynamic Systems Second Edition,” USA. John Wiley & Sons, Co., 1995.
    [30] D. Zorbas, “Electric Machines: Principles, Applications, and Control Schematics,” West Publishing Co., 1989.
    [31] S. D. Senturia, “Microsystem Design,” Boston, MA: Kluwer Academic, 2001.
    [32] J. J. Slotine and W.-P. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991.
    [33] C. Edwards and S. K. Spurgeon, “Sliding Mode Control Theory and Applications,” UK, Taylor and Francis, 1998.

    下載圖示 校內:立即公開
    校外:2002-08-07公開
    QR CODE