| 研究生: |
顧安平 Ku, An-Ping |
|---|---|
| 論文名稱: |
三維匯流微流管道之流場研究 A Study of the Flow-Field on Three-Dimensional Merging Micro-Flow |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 介面 、流場 、三維 、微流體 |
| 外文關鍵詞: | interface, flow-field, microfluidic, Three-dimensional |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微型擴散分離晶片為近年來生醫檢測晶片熱門的發展重點之一,其優點為在不對樣本施加任何外力之情況下,可進行不同細胞尺寸之分離。理想之擴散分離晶片,應朝向擴散距離短,擴散面積大之設計。然而在二維管道架構下,此種高深寬比(aspect ratio)之微流管道受制於微機電製程,短時間內無法以較普及之技術製造。為了達到理想之擴散分離目的,本研究欲以三維匯流之微管道設計克服上述之限制。
本研究以CO2雷射光刻製程,以Polyethylene terephthalate(PET) , Polymethyl methacrylate(PMMA)運用堆疊方式製作三維匯流微流管道,並以螢光檢測法分析其流場。由實驗結果得知,我們發現兩道三維匯合之層流介面並不為平行分佈,而呈現一傾斜之立體分佈之流場特性。
雖然各式三維晶片蓬勃發展,但其流場特性鮮少文獻探討;三維微管道流場特性,預計對於晶片之實驗定量數據準確性及可靠性有很大影響。使得微流道內之流場探討有其基本重要性。
本研究藉由設計三維匯流微流道之實驗與模擬,分析探討寬深比、雷諾數、流量、曲率半徑以及入口長度等參數對三維微流場之分佈影響,使我們對三維結構的管道之流場特性與機制有進一步的了解,可做為未來三維微結構管道設計研究之新依據。
The diffusion-based microchip for separation is an important technology for sample analysis in bio-chip science. The advantage is that bio-particle can be separated without applying any other force. The ideal design of such microchips should have less diffusion length and larger diffusion area. With traditional two dimensional configurations, it means a high aspect ratio microchannel, and it is hard to fabricate with current MEMS technology. In this study, we design three dimensional merging microchannels to achieve the goal mentioned above.
The study employed CO2 laser fabrication technique for building microchannel by laminating PET and PMMA layers, and analyzed its flow-field by fluorescence method. We have proved that the distribution of the two laminar flows is not parallel in 3-D merging micro-flow by experiments. The interface is tilted and three dimensional. We have confirmed it is the flow-field characteristic in this 3-D configuration.
Though the development of 3-D microchip is popular in recent years, the studies on its flow-field characteristic are few. We believe the findings in the current study will affect the data analysis and reliability of such type of microchip.
The study discussed the effect of aspect ratio, Reynolds number, and flow rate, curvature of radius and entrance length on its flow field. By the analysis of parameters above, we have better understanding of mechanism and characteristic of 3D micro flow-field for further researches.
1. A Radbruch, “Flow cytometry and call sorting”, Springer-Verlag Inc., 77-11 (1992).
2. T.S. Paul, “Methods of cell separation”, Elsevier, 23-26 (1988).
3. M. Berger, J. Castelino, R. Huang, M. Shah, R. H. Austin, “Design of a microfabricated magnetic cell separator”, Electrophoresis, 22, 383-3892 (2001).
4. K. Asami, E. Gheorghiu,T. Yonezawa,”Dielectric behavior of budding yeast in cell separation”, Biochimica et Biophysica Acta, 1381, 234-239(1998).
5. P.R.C. Gascoyne, X.B. Wang, Y.Huang, F.F. Becker, “Dielectrophoretic separation of cancer cells from blood”, IEEE Transactions on Industry Applications, 33, 670-678(1997)
6. C. S. Effenhauser, A. Manz A., H. M. Widmer, “Glass chips for high-speed capillary electrophresis separations with submicrometer plate heights” Analytical Chemistry, 65, 2637-2642(1993).
7. A. T. Woolley, K. Q. Lao, A. N. Glazer, R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection”, Analytical Chemistry, 70,684-688(1998).
8. J. P. Brody, P. Yager, ”Diffusion-based extraction in a microfabricated device”. Sensors and Actuators A, 58, 13-18 (1997).
9. H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a Lab-on-a-chip,” Annu. Rev. Fluid Mech, 36:381-411, (2004).
10. J. P. Brody, P. Yager, R. E. Goldstein and R. H. Austin, “Biotechnology at Low Reynolds Numbers” Biophysical Journal, 3430-3441, (1996).
11. S. Levin, J.C. Giddings, “continuous Separation of particles from macromolecules in split-flow thin (SPLITT) Cells”, Journal of Chemical Technology and Biotechnology, 50,43-56(1991).
12. J.C. Giddings, “Field-flow fractionation : separation and characterization of macromolecular-colloidal-particulate materials”, Science, 260, 1456-1465 (1993).
13. P.S. Willams, et al, “Continuous SPLITT fractionation based on a diffusion mechanism”, Industrail and Enginnering Chemistry Research, 31, 2172-2181 (1992).
14. J. P. Brody, T. D. Osborn, F. K. Forster, P. Yager, “A planer microfabricated fluid filter”, Sensors and Actuators A (Physical), A5, 704-708(1996).
15. B. H. Weigl, M. R. Holl, D. Schutte, J. P. Brody, P. Yager, ”Diiusion-based optical chemical detection in silicon flow structures”, Analytical method and instrumentation, Proceedings of μTAS’96, 174-184 (1996).
16. A.E. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager, “Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor”, Analytical Chemistry, 71, 5340-5347 (1999).
17. B.H. Weigl, P. Yager, “Microfluidic diffusion-based separation and detection”, Science, 283(5400), 346-347 (1999).
18. A. E. Kamholz, P. Yager, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels”, Biophysical Journal, 80, 155-160 (2001).
19. A. E. Kamholz, P. Yager, “Molecular diffusive scaling laws in pressure-driven microfluidec channels: deviation from one-dimensional Einstein approximations” Sensors and Actuators B, 82(1), 117-121 (2002).
20. P. Yager,”Transverse diffusion in microfluidic systems”, Lab-on-a-chip: Chemistry in miniaturized synthesis and analysis systems. (2003).
21. B. H. Weigl, “Lab-on-a-chip-based separation and detection technology for life science applications” American biotechnology laboratory, 20:1, 28-30
22. B. H. Weigl, R. Bardell, T. Schulte, “Design and rapid prototyping of thin-film laminate-based microfluidic devices”, Biomedical microdevices, 3, 4, 267-274, (2001).
23. P. Krulevitch, W. Benett, J. Hamilton, “Polymer-based packaging platform for hybrid microfluidic systems”, Biomedical microdevices, 4, 4, 301-308, (2002).
24. R. F. Ismagilov, D. Rosmarin, P. J. A. Kenis, D. T. Chiu, W. Zhang, H. A. Stone, and G. M. Whitesides, “Pressure-Driven Laminar Flow in Tangential Microchannels: an Elastomeric Microfluidic Switch”, Analytic. Chemistry, 73, 4682-4687, (2001).
25. H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, (1977).
26. Steve Wereley,”Nano-bio-micro fluids tutorial”, Nanotech 2004.
27. O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London A, 174-935 (1883).
28. X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264 (1994).
29. Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, Vol. 121 (1999).
30. P. Wu, W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277 (1983).
31. S. Levin, J.C. Giddings, “Rapid diffusion coefficient measurements using analytical SPLITT fractionation : application to proteins”, Analytical Biochemistry, 208, 80-87, (1993).
32. B.H. Weigl, “Microfluidics-based lab-on-a-chip systems”, (2000)
33. CRC Handbook of chemistry and physics, CRC Press.
34. Reist、鄭福田、劉希平, “微粒導論”, 國立編譯館, 2001年.