| 研究生: |
賴韋旭 Lai, Wei-Hsu |
|---|---|
| 論文名稱: |
3-(N-甲基胺基)甲基兒茶酚及3-胺基甲基兒茶酚與偏鄰苯二酚雙加氧酶的反應 The Reactions of 3-(N-Methylamino)methyl Catechol and 3-Aminomethyl Catechol with Metapyrocatechase |
| 指導教授: |
黃得時
Huang, Ded-Shih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 加氧酶 、酵素 、抑制劑 |
| 外文關鍵詞: | enzyme, oxygenase, inhibitor |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由醱酵槽連續式醱酵的結果顯示所使用的培養基中苯甲酸鈉的濃度為細菌成長的限制量,另一個影響細菌培養時間的限制因素是單位時間空氣(氧氣)的供給量;當苯甲酸鈉的濃度為每升9克,空氣每分5升,轉速,攪拌每分600轉時所收集到的細菌最高濃度約為15 g/L。
根據動力學所得到抑制劑3-氯兒茶酚,3-胺基甲基兒茶酚,及3-(N-甲基胺基)甲基兒茶酚的Ki值依序分別為1.86μM,65.98μM,及85.48μM。而3-胺基甲基兒茶酚,及3-(N-甲基胺基)甲基兒茶酚的Km值分別為53.94μM,70.93μM,影響Km及Ki值的最大因素應取決於取代基的大小,換句話說,3-取代基兒茶酚與偏鄰苯二酚雙加氧酶的結合階段主要是受立體效應的影響。
3-胺基甲基兒茶酚及3-(N-甲基胺基)甲基兒茶酚使偏鄰苯二酚雙加氧酶失活的反應速率(Kinact)則分別為0.24 min-1,0.20 min-1。
The results of cell culture experiments using semi-continuous fermentation system indicated that the benzoate is the limited species of the growth media. Another limited of growth factor is the oxygen supply. When the benzoate concentration was 9 g/L and the air supply was 5 L/min with the agitation speed of 600 rpm, a high yield (15g/L) of Pseudomonas cells can be obtained.
The Ki’s of 3-chlorocatechol, 3-aminomethyl catechol and 3-(N-methylamino)methyl catechol against metapyrocatechase were 1.86μM, 65.98μM and 85.48μM, respectively. The Km’s of 3-aminomethyl catechol and 3-(N-methylamino)methyl catechol are 53.94μM and 70.93μM, respectively. These results indicated that the inhibition ability of the substituted catechol is government by the size of substituent in the 3-position of catechol.
The inactivation constant of 3-aminomethyl catechol and 3-(N-methylamino)methyl catechol was also examined. The Kinact of these two inactivators are 0.24 min-1 and 0.20 min-1, respectively.
參考文獻
1. Hayaishi, O.; Hashimoto, Z. J. Biochem. (Tokyo) 1950, 37, 371.
2. Hayaishi, O.; Katagin, M.; Rothberg, S. J. Am. Chem. Soc. 1955, 77, 5450-5451.
3. Mason, H. S.; Fowlks, W. L.; Peterson, E. J. Am. Chem. Soc. 1955, 77, 2914-2915.
4. Nozaki, M., Topics in Current Chem. 1979, 78, 145.
5. Mason, H. S. Adv. Enzymol. 1957, 19, 79.
6. Harayama, S.; Kok, M.; Neidle, E. L., Functional and Evolutionary Relationships among Diverse Oxygenases, Ann. Rev. Microbiol., 1992, 46, 565-601.
7. Mason, J. R.; Cammack, R., The Electron-Transport Proteins of Hydroxylating Bacterial Dioxygenases, Ann Rev. Microbiol., 1992, 46, 277-305.
8. Nozaki, M.; Kotani, S.; Ono, K.;Senoh, S.,Metapyrocatechase,Ⅲ. Substrate Specificity and Mode of Ring Fission, Biochem. Biophys. Acta. 1970, 220, 224-238.
9. Kojima,Y.;Itada,N.;Hayaishi,O., Metapyrocatechase:a New Catechol-Cleaving Enzyme,1961,236,2223-2228.
10. Que,l.Jr.;Struct.Bonding.,1980,40,39.
11. Nozaki,M.;Kagamiyama,H.;Hayaishi,O.,Metapyrocatechase Ⅰ.Purification,Crystallization and Some Properties,Biochem.Z.,1963,338,582-590.
12. Nozaki,M.;Ono,K.;Kagamiyama,H.;Kotani,S.;Hayaishi,O., Metapyrocatechase,Ⅱ.The Role of Iron and Sulfhydryl Groups,J.Biol.Chem.,1968,243,2682-2690.
13. Arciero,D.M.;Lipscomb,J.D.;Huynh,B.H.;Kent,T.A.;Munck,E., EPR andMossbauer studies of protocatechuate 4,5-dioxygenase.Characterization of a new Fe2+ environment,J.Biol.Chem.,1983,258,14981-14991.
14. Takemori,S.;Komiyama,T.;Katagiri,M.,Eur.J.Biochem.,1971,23,178.
15. Que,L.Jr.;Widom,J.;Crawford,R.L.,3,4-Dihydroxyphenylacetate 2,3-dioxygenase.Amanganese dioxygenase from Bacillus brevis, J.Biol.Chem.,1981,256,10941.
16. Jamaluddin,M.P.;J.Bacteriol.,1977,129,690.
17. Que,L.Jr.;Ho,R.Y.N., Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Site, Chem.Rev., 1996,96,2607-2624.
18. Orville,A.M.;Lipscomb,J.D.,Simultaneous binding of nitric oxide and isotopically labeled substrates or inhibitors by reduced protocatechuate 3,4-dioxygenase, J.Biol.Chem., 1993,268,8596-8607.
19. Bertini,I.;Briganti,F.;Mangani,S.;Nolting,H.F.;Scozzafava,A.,Biophysical Investigation of Bacterial Aromatic Extradiol Dioxygenase Involved in Biodegradation Processes, Coord.Chem.Rev.,1995,144,321-345.
20. Sanvoisin,J.;Langley,G.J.;Bugg,T.D.H.,Mechanism of Extradiol Catechol Dioxygenase: Evidence for a Lactone Intermediate in the 2,3-Dihydroxyphenylpropionate 1,2-Dioxygenase Reaction,J.Am.Chem.Soc.1995,117,7836-7837.
21. Dagley,S.;Stopher,D.A.,A New Mode of Fission of the Benzene Nucleus by Bacteria,Biochem.J.,1959,73,16-17.
22. Nakai,C.;Hori,K.;Kagamiyama,H.;Nozaki,M.;Nakazawa,T.;Inouye,S.;Ebina,Y.;Nakazawa,A.,Complete nucleotide sequence of the metapyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2,J.Biol.Chem.1983,258,2923-2928.
23. Nakai,C.;Hori,K.;Kagamiyama,H.;Nakazawa,T.; Nozaki,M. J.Biol.Chem.1983,258,1916-1922.
24. Zukowski,M.M.;Gaffney,D.F.;Speck,D.;Kauffmann,M.;Findeli,A.;Eisecup,A.;Lecocq,J.-P.,Chromogenic Identification of Genetic Regulatory Signal in Bacillus subtilis Based on Expression of a Cloned Pseudomonas Gene, Proc.Natl.Acad.Sci.,1983,80,1101-1105.
25. Kita,A.;Kita,S.;Fujisawa,I.;Inaka,K.;Ishida,T.;Horiike,K.;Nozaki,M.;Miki,K.,An Archetypical Extradiol-Cleaving Catecholic Dioxygenase:The Crystal Structure of Catechol 2,3-Dioxygenase(Metapyrocatechase) from Pseudomonas Putida mt-2,Structure,1999,7,25-34.
26. Briggs,G.E.;Haldane,J.B.S.,Biochem.J.,1925,19,338.
27. Lineweaver,H.;Burk,D.,J.Am.Chem.Soc.1934,56,658.