| 研究生: |
劉俊賢 Liu, Chun-Hsien |
|---|---|
| 論文名稱: |
鋼針模型加勁式擋土構造之行為研究 On the Behavior of Reinforced Structure via Steel-Rod Model |
| 指導教授: |
常正之
Charng, J.J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 鋼針模型 、加勁 |
| 外文關鍵詞: | Reinforced, Steel-Rod |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土壤加勁的技術在近三十年迅速發展並廣泛使用,土釘擋土工法由於其施工上時間與費用優勢,且適合應用在生態保護概念的施工,因此近年備受矚目;但是對於此類加勁式構造物其結構體內的互制情形尚有不清楚之處。本研究建立一鋼針傾斜箱模型,利用鋼針特具之二維的性質,突破一般砂箱模型的限制而得以觀察加勁邊坡模型在破壞過程中的發展,並探討不同面版勁度、不同加勁長度及不同加勁層數等配置之下,模型的破壞行為與穩定性的變化。
由試驗結果顯示,勁度低的面版較容易出現局部破壞的發生,而其穩定性在短加勁材料配置下並無法有效率的提升;但是當加勁材料長度達到某一門檻長度之後,面版勁度對穩定性的影響將不明顯。而且由模型破壞過程的觀察,加勁區域形成一體化而類似塊體的滑動;破壞面位置與破壞型態與加勁形式息息相關,而其亦產生相應之變化,因此就加勁材構造物的分析與設計,應考慮加勁材料對整體行為的影響。
The reinforced technique has developed rapidly in these thirty years and used extensively. Because of the advantages in time consuming, constructing cost and suitable for the ecological construction, the soil nailing method was gazed by engineers. But there are still some unclear points in the intersection inside the structure with reinforcements. In the study, we establish a steel-rod tilting box model and take the advantages of steel rods that general sand box model can’t. In the steel-rod tilting model, due to a 2-D simulation, we can observe the development of failure clearly and study the failure behavior and stability of the model with different depositions of face slab and different embedded length and spacing of the reinforcements.
The results show that the face slab with low stiffness will occur some local failure more easily and the stability of deposition with short reinforcements can’t increase satisfactorily. But when the reinforcement is long enough, i.e., longer than a threshold length, then the influence of face slab is unapparent. By the observation of failure processes, the reinforced zone forms a whole and slips like a mass. The location of failure surface and failure mode will change with different reinforced style and reinforced purpose. Therefore, for design and analysis of reinforced structure, it must take into the account of the influence of reinforcements on the whole behavior.
[1] 陳榮河, 何嘉浚(2003) “土釘擋土工法導論” 地工技術,第98期 pp.5-16。
[2] 洪勇善(1999) “Mechanical Behavior of Nailed Soil Retaining Structures”, 博士論文,國立台灣大學土木工程學研究所,台北。
[3] 洪永善 (2003) “土釘加勁陡坡破壞機制與耐震行為” 地工技術,第98期 pp.17-26。
[4] 孟繁羽(1996) 「探討壁面勁度與主動土壓力關係之鋼針模型試驗」,碩士論文,國立成功大學土木工程學研究所,台南。
[5] 陳宏杰(2000),「土釘擋土牆力學行為之探討」,碩士論文,國立台灣大學土木工程學研究所,台北。
[6] 周育慶(1997),「鋼針模型擋土牆之主動土壓力試驗與分析」,碩士論文,國立成功大學土木工程學研究所,台南。
[7] Asaoka, A., Pokharel, G.& Ochiai, T. (1996). “Stability analysis of reinforced soil structures introducing some linear constraint conditions upon the 3-D velocity field”, Earth Reinforcement, pp.717-722.
[8] Bang, S., and Wilkins, B.F. (1996). “Deep seated stability of soil nailing walls”, Earth Reinforcement, pp. 729-734.
[9] Bang, S., and Nyaz, W. (2001). “Simulation of soil nailing facing walls in finite element analysis”, Landmarks in Earth Reinforcement, pp.641-646.
[10] Bruno Teixeira Dantas, Mauricio Ehrlich. (1999). “Numerical analysis of reinforced soil slopes under working stress conditions”, Slope Stability Engineering, pp.1055-1060.
[11] Ehrlich, M., Marcio, S.S., Almeida and Lima, M.A. (1996). “Parametric numerical analyses of soil nailing systems”, Earth Reinforcement, pp.747-752.
[12] Fan, C.C., (2003). “Investigation of Optimum Design of Soil-Nailed Retaining Structures”, Sino-Geotechnics, No.98 pp.27-38.
[13] Fukumasa, T., Murakami, H., Nishihara, R., Kimura, H., Yamaura, M., and Darbar, S.R. (2001). “Study on reinforcement method for seismic slope stability”, Landmarks in Earth Reinforcement, pp.659-662.
[14] Huang, C.C., Menq, F.Y., and Chou, Y.C. (1999). “The Effect Of The Bending Rigidity Of A Well On Lateral Pressure Distribution”, Canada Geotech. J. Vol 36, pp.1039-1055.
[15] Huang, C.C., and Tsai, C.C., Tateyama, M. (1999). “3-D stability analyses for asymmetrical and heterogeneous nailed slopes”, Slope Stability Engineering, pp. 1049-1053.
[16] J. M. Zhou, H. Yokota & M. Sezaki (1996) “Insitu test of steel-nailing reinforcement for cut slope with alternating” Earth Reinforcement pp.841-846.
[17] Juran, I., George, B., and Khalid, F., Elias, V., (1988). “Kinematical limit analysis approach for the design of nailed soil retaining structured”, Theory and Practice of Earth Reinforcement, pp. 301-306.
[18] Kenny, M.J., Kawai, Y. (1996). “The effect of bending stiffness of soil nails on wall deformation”, Earth Reinforcement, pp.771-774.
[19] Kim, J.S., and Park, C.L., Lee, S.D., Lee, S.R. (1999). “A large-scale experimental study of soil-nailed structures”, Earth Reinforcement, pp.775-780.
[20] Kitamura, T., and Nagao, A., Uehara, S. (1988). “Model loading tests of reinforced slope with steel bars”, Theory and Practice of Earth Reinforcement, pp.331-316.
[21] Kodaka, T., Asaoka, A., and Pokharel, G. (1995). “Model Tests and Theoretical Analysis of Reinforced Soil Slopes with Facing Panels”, Soils and Foundations, Vol.35, No. 1, pp.133-145.
[22] Koseki, J., Munaf, Y., Tatsuoka, F., Tateyama, M., Kojima, K., and Sato, T., (1998). “Shaking and tilt table tests of geosynthetic- reinforced soil and conventional- type retaining walls”, Geosynthetics International, pp.73-96.
[23] Kulczkowski, M. (1996). “Stability analysis of reinforced slopes based on apparent cohesion method”, Earth Reinforcement, pp.785-790.
[24] Lee, K.L., ASCE. (1973). “Reinforced Earth Retaining Walls”, Journal of the Soil Mechanics and Foundations Division, pp.745-763.
[25] Lee, W. F., Lai, Y.J., and Liao, N.H. (2003). “Two-Dimensional Numerical Analysis of Soil Nail Reinforced Slope”, Sino-Geotechnics, No.98, pp.39-54.
[26] Lu, F.C., Lin, Y.K., Kuo, C.J., and Huang C.S. (2003). “The application and case studies of soil nailing for slope excavations”, Sino-Geotechnics, No.98, pp.55-64.
[27] Maric, B., Kvasnicka, P., Radaljac, D. and Mavar, R. (2001). “An example of a high soil nailed wall in plastic clayey soil”, Landmarks in Earth Reinforcement, pp.669-674.
[28] Matsuoka, H., and Sugiyama, Y. (1996). “Failure mechanism and effective reinforcement of granular soil slope”, Earth Reinforcement, pp.803-808.
[29] Matsuoka, H., Liu, S.H., and Ohashi, T. (1999). “Model test on granular soil slope and determination of strength parameters under low confining stresses slope surface”, Slope Stability Engineering, pp. 681-686.
[30] Michalowski, R.L. (1999). “Instability patterns of reinforced-soil structures”, Earth Reinforcement, pp.809-814.
[31] Mino, S., Noritake, K., and Innami, S. (1988). “Field monitoring procedure of cut slopes reinforced with steel bars”, Theory and Practice of Earth Reinforcement, pp.323-327.
[32] Nagayoshi, T., Tayama, S., Ogata, K., and Tada, M. (1999). “Full-scale model test on deformation of reinforced steep slopes”, Slope Stability Engineering, pp. 1009-1014.
[33] Nishida, K., and Nishigata, T. (1996). “Reaction of reinforcing force and restrainment effect on soil nailing”, Earth Reinforcement, pp.815-820.
[34] Nishigata, T., and Nishida, K. (1999). “Reinforcement mechanism in soil nailing for stabilization of steep slopes”, Slope Stability Engineering, pp.1065-1070.
[35] Okabayashi, K., and Kawamura, M. (1999). “Relation between wall displacement and optimum amount of reinforcements on the reinforced retaining wall”, Slope Stability Engineering, pp.1015-1020.
[36] Sabhahit, N., Basudhar, P.K., and Madhav, M.R. (1995). “A Generalized Procedure For The Optimum Design Of Nailed Soil Slopes”, International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 19, pp. 437-452.
[37] Sano, N., Kitamura, T., and Matsuoka, K. (1988). “Proposal for design and construction of reinforced cut slope steel bars”, Theory and Practice of Earth Reinforcement, pp. 347-352.
[38] Schaefer, V.R., Lee W., Abramson, et al. (1997). “Soil Nailed Retaining Structures”, Soil Improvement And Geosynthetics, pp. 201-232.
[39] Yang, X.Q. and He, S.X., Liu, Z.D. (1999). “Design method of vertical reinforced slopes under rotational failure mechanism”, Slope Stability Engineering, pp.1061-1064.