| 研究生: |
廖尹鐸 Liao, Yi-To |
|---|---|
| 論文名稱: |
金屬鑄件與砂模間界面熱傳係數之分析 The Analysis of Heat-Transfer Coefficient At The Interface Between Casting And Sand Mold |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 等效熱傳係數 、界面熱阻 、界面熱傳係數 |
| 外文關鍵詞: | Heat Transfer Coefficient |
| 相關次數: | 點閱:179 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鑄造過程之熱傳模式的分析中,模與金屬界面熱傳情形是一關鍵性的問題,若無法妥善地處理此界面條件,會直接影響分析的結果。最簡單的界面條件是假設模與(模穴中的)金屬是緊密接觸,即溫度與熱通量在此界面是連續的。但此項假設與真實情況會有所差異,而實際上是需要一界面熱阻或等效熱傳係數(h)來連接模與金屬兩邊的熱通量。同時此界面熱傳係數之獲得對模式研究者是非常重要的。
本研究針對濕砂模的鑄造,使用鋁、錫及鋅作為鑄造材料,以不同大小之圓柱體與矩形體作為鑄件模型,用熱電偶量測出凝固過程溫度場的變化情形,採用反算法求出金屬/砂模間界面之金屬溫度,進而求出傳出金屬界面之熱通量與等效熱傳係數。
本研究對於濕砂模與鑄件間之等效熱傳係數,已完成初步的研討工作,所得的成果可以作為日後更進一步研究及實際套裝軟體應用的基礎。
In the heat-transfer analysis of a casting process, how to handle the heat transfer condition at the mold/metal interface is a key problem. If it is not manipulated properly, that will directly affect the final result of analysis. The simplest one is to assume that it is perfect contact at the interface (i.e., the temperature and the heat flux are continuous there). However, this deviates from the real condition and it needs a heat resistance or an effective heat transfer coefficient to connect the heat fluxes from both sides of the interface. To find the effective heat transfer coefficient is very important to the analyzer of casting processes.
This research, emphasizes on the castinng of sand mold, with the casting materials of aluminum, tin, and zinc, to produce casting model by different sizes of cylinder and rectangle. Also, to examine the temperature situation of the solidification process by thermal couple, and to count the metal temperature of the interface between metal and sand mold, in order to calculate the heat flux and effective heat transfer coefficient of the metal interface.
This research has finished the initial study of the effective heat transfer coefficient between sand mold and casting. The result can be the basics of the further research, and the application of package software in the future.
參考文獻
Beck J. V., “Calculation of Surface Heat Flux from an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46(1962).
Beck, J.V., "Surface Heat Flux Determination Using an Integral Method," Nucl. Eng. Des., Vol. 7, pp. 170-178(1968).
Beck, J.V., "Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem," International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716(1970).
Beck, J.V., Litkouhi, B., and St. Clair, C.R., "Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem," Numerical Heat Transfer, Vol.5, pp. 275-286,(1982).
Beck, J. V. and Wolf, H., “The Non-lineat Inverse Heat Conduction Problem.” ASME J. Heat Transfer, No. 65-HT-40(1965).
D’Souza N., “Numerical Solution of One-dimensional Inverse Transient Heat Conduction by Finite Difference Method,” ASME J. Heat Transfer, No. 75-WA/HT-81(1975).
Ho, S. and Pehlke, R. D., “Metal-Mold Interfacial Heat Transfer,” Metallurgical Transacton B, Vol. 16B, pp. 585-594(1985).
Ho, K. and Pehlke R. D., “Transient Methods for Determination of Metal-Mold Interfacial Heat Transfer,” Metallurgical Transacton B, Vol. 17B, pp. 833-844(1986).
Hou, T. X. and Pehlke, R. D., “Determination of Mold-Metal Interfical Heat Transfer and Simulation of Solidification of Aluminum-13% Silicon Cast,”AFS Trans.,Vol 94, pp. 129-136(1986).
Krzysztof, G., Cialkowski, M. J. and Kaminski, H., “An Inverse Temperature Field Problem of The Theory of Thermal Stresses,” Nucl. Eng. Des., Vol. 64, pp. 169-184, (1981).
Krutz, G. W., Schoenhals, R. J. and Hore, P. S., “Application of The Finite-Element Method to The Inverse Heat Conduction Problem,” Num. Heat Transfer, Vol. 1, pp. 489-498, (1978).
Kubo, K. and Pehlke, R. D., “Heat and Mooisture Transfer in Sand Molds Containing Water,” Metallurgical Transacton B, Vol. 17B, pp. 903-911(1986).
Nishida, Y. and Droste, W. and Engler, S., “The Air-Gap Formation Process at the Casting Mold Interface and the Heat TransferMechanism through the Gap,” Metallurgical Transacton B, Vol. 17B, pp. 833-844(1986).
Shumakov, N. V., “A Method for the Experimental Study of the Process. of Heating a Solid body,” soviet Physics-Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, (1957).
Stolz, G. Tr., “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes”, ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb. (1960).
Sparrow E. M., Haji-Sheikh, A. and Lundgren, T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., vol. 86e, pp. 369-375(1964).
Shin, T. S., Hsiau, S. S. and Hong, C. H., “Movement of Voporization Interface and Temperature Distributions in Green Sand Molds,”AFS Trans., Vol. 104, pp. 258-273(1996).
Tsia, H. L. and Chiang, K. C. and Chen, T. S., “Movement of Moisture Front and Alloy Solidification in Green sand Casting,”AFS Trans.,Vol. 96, pp.191-196(1988).
Zeng, X. C., Chiang, R. D. and Chen, T.S., “Analysis of Heat Transfer at Metal-Sand Mold Boundaries and Computer Simulation of Solidfication of a Gray Iron Casting,”AFS Trans.,Vol. 93, pp.275-282(1985).
鍾尚浩,“鑄造灌模及凝固解析模式之改良及其相關實驗技術之研究發展”,博士論文,國立成功大學 (1992)。
黃俊誠, “A356鋁合金鑄造過程中界面熱傳係數的量研究,”國立成功大學材料所碩士論文 (1994)。
廖茂奇, “濕砂模鑄造之熱傳分析,”國立成功大學工科所碩士論文 (1996)。
孫憲琪, “濕砂模與鑄件間之熱傳分析,”國立成功大學工科所碩士論文 (1997)。
郭孟遠, “材料凝固熱性質之估算,”國立成功大學工科所碩士論文 (1999)。
林立勝, “凝固熱性質之估算,”國立成功大學工科所碩士論文 (2000)。