簡易檢索 / 詳目顯示

研究生: 黃仁顥
Huang, Ren-Hao
論文名稱: 鳥類磁感機制之建模與分析
Modeling and Analysis of Bird's Magnetoreception Mechanism
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 量子生物鳥類導航鳥類磁感自由基對機制
外文關鍵詞: quantum biology, radical pair mechanism
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 每當遷徙季節一到,成千上萬的鳥類將成群結隊地飛往牠們的目的地;其中最令人感到不可思議的地方,就是牠們有如GPS (global positioning system)一般優良的導航能力。從鳥類的行為實驗上來看,鳥類導航所利用的方法可能有很多種,我們無法辨別牠們究竟是利用什麼方法來感知方向資訊;不過,由於鳥類的磁感(magnetoreception)已經在許多的實驗中被證實,因此有許多人認為鳥類辨別方向的能力是來自於地球磁場所提供的訊息。其中,有一個以量子力學為基礎的理論認為,地球磁場會間接影響鳥類體內自由基對的化學反應,進而影響鳥類的飛行方向;我們將這個化學磁感理論稱為自由基對機制(radical pair mechanism)。本篇論文的主要目的,就是根據已知的自由基對機制理論,建立出一個可以在Matlab環境下進行模擬的簡化模型,並討論模擬結果與鳥類行為之間的關聯性。

    When the season of migration comes, there are thousands of birds flying in flocks to the destination. The most inconceivable thing is that, their ability of navigation is excellent, just like the GPS(global positioning system). On the view of the bird’s behavioural experiments, birds probably have so many kinds of skill to navigate that we can’t recognize what exactly skill they use to perceive the information of direction. But, bird’s magnetoreception has been proven by many provided experiments. Some researchers believed that the ability birds find out the directions comes from the information of geomagnetic field. There is a theory, which is based on Quantum Mechanics, suggested that the geomagnetic field affects the chemical interactions of radical pairs in birds indirectly, and hence affects the orientation of birds. This chemical magnetoreception theory is called radical pair mechanism. In this thesis, our main purpose is, according to the existing theory, to establish a simplified model which can be simulated in Matlab, and to discuss the relation between the simulation results and bird’s behaviour.
    Key Words: quantum biology, bird’s migrating, bird’s navigation, radical pair mechanism

    中文摘要 i Abstract ii 致謝 vii 目錄 viii 圖目錄 x 符號表 xii 第一章 緒論 1 1.1 研究背景與文獻回顧 1 1.2 研究動機與目的 5 1.3 論文架構 6 第二章 自由基對的磁感原理 8 2.1 自由基對的特性 8 2.2 自由基對的磁場效應 10 2.3 自由基對機制的反應流程 12 第三章 自由基對系統的數學描述 15 3.1 自由基對系統的Hamiltonian算符 15 3.2 自由基對反應產物的比例濃度 19 第四章 自由基對系統的模型建立 25 4.1三個粒子的自由基對系統 25 4.2 非等向性的超精細耦合 37 4.3 廣義化模型 46 第五章 模擬結果與鳥類行為分析 64 5.1 模擬結果分析 65 5.2 鳥類的導航系統-鳥類視覺羅盤 67 第六章 總結 79 6.1 結果與討論 79 6.2 未來展望 81 參考文獻 83 附錄A 87 密度算符(density operator) 87 量子Liouville方程式 88

    [1] Brian Brocklehurst, “Spin correlation in the geminate recombination of radical ions in hydrocarbons. Part 1.—Theory of the magnetic field effect”, Journal of the Chemical Society, Perkin Transactions 2, Vol. 72, 1869-1884, 1976.
    [2] Charles Walcott, Klaus Schmidt-Koenig, “The effect on pigeon homing of anesthesia during displacement”, The Auk, Vol. 90, 281-286, 1973.
    [3] C. R. Timmel, U. Till, B. Brocklehurst, K. A. Mclauchlan and P. J. Hore, “Effects of Weak Magnetic Fields on Free Radical Recombination React- ions”, Molcular Physics, Vol. 95, 71-89, 1998.
    [4] Christopher T. Rodgers, P. J. Hore, “Chemical magnetoreception in birds: The radical pair mechanism”, Proceedings of the National Academy of Sciences, Vol. 106, 353-360, 2009.
    [5] Christopher T. Rodgers, “Magnetic field effects in chemical systems”, Pure and Applied Chemistry, Vol. 81, 19-43, 2009.
    [6] Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, Vlatko Vedral, “Sustained quantum coherence and entanglement in the avian compass”, arXiv:0906.3725v5, 2011.
    [7] F. Cintolesi, T. Ritz, C. W. M. Kay, C. R. Timmel, P. J. Hore, “Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor”, Chemical Physics,
    Vol. 294, 385-399, 2003.
    [8] Henrik Mouritsen, Thorsten Ritz, “Magnetoreception and its use in bird navigation”, Current Opinion in Neurobiology, Vol. 15, 406-414, 2005.
    [9] Ilia A. Solov’yov, Klaus Schulten, “Understanding how birds navigate”, SPIE Newsroom, 2009.
    [10] Jianming Cai, Gian Giacomo, Guerreschi, Hans J. Briege, “Quantum control and entanglement in a chemical compass”, Physical Review Letter, Vol. 104, 220502, 2010.
    [11] Klaus Schmidt-Koenig, Charles Walcott, “Tracks of pigeons homing with frosted lenses”, Animal Behaviour, Vol. 26, 480-486, 1978.
    [12] Marianne Hanzlik, Christoph Heunemann, Elke Holtkamp-Rötzler, Mic- hael Winklhofer, Nikolai Petersen, Gerta Fleissner, “Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons”, BioMetals, Vol. 13, 325-331, 2000.
    [13] Michael M. Walker, Todd E. Dennis, Joseph L. Kirschvink, “The magne- tic sense and its use in long-distance navigation by animals”, Current Opinion in Neurobiology, Vol. 12, 735-744, 2002.
    [14] Malcolm H. Levitt, “Spin Dynamics”, John Wiley & Sons Ltd, 2008
    [15] Maria Procopio, Thorsten Ritz, “Robust signals from a quantum-based magnetic compass sensor”, arXiv:1309.6372v1, 2013.
    [16] N. Mohtat, F. L. Cozens, T. Hancock-Chen, J. C. Scaiano, J. McLean, J. Kim, “Magnetic Field Effects on the Behavior of Radicals in Protein and DNA Environments”, Photochemistry and Photobiology, Vol. 67, 111-118, 1998.
    [17] P. Thalau, T. Ritz, K. Stapput, R. Wiltschko, W. Wiltschko, “Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field”, Naturwissenschaften, Vol. 92, 86-90, 2005.
    [18] Sӧnke Johnsen, Kenneth J. Lohmann, “Magnetoreception in animals feature article”, Physics Today, Vol. 61, 29-35, 2008.
    [19] Thorsten Ritz, Adem, and Klaus Schulten, “A Model for Photoreceptor- Based Magnetoreception in Birds”, Biophysical Journal, Vol. 78, 707-718, 2000.
    [20] Todd E Dennis, Matt J Rayner and Michael M Walker, “Evidence that pigeons orient to geomagnetic intensity during homing”, Proceeding of The Royal Society B, Vol. 274, 1153-1158, 2007.
    [21] T. Ritz, R. Wiltschko, P. J. Hore, C. T. Rodgers, K. Stapput, P. Thalau, C. R. Timmel, and W. Wiltschko, “Magnetic Compass of Birds Is Based on a Molecule with Optimal Directional Sensitivity”, Biophysical Society, Vol. 96, 3451-3457, 2009.
    [22] Thorsten Ritz, “Quantum effects in biology: Bird navigation”, Procedia Chemistry, Vol. 3, 262-275, 2011.
    [23] Ulrich E. Steiner, Thomas Ulrich, “Magnetic field effects in chemical kinetics and related phenomena”, Chemical Reviews, Vol. 89, 51-147, 1989.
    [24] U. Till, P. J. Hore, “Radical pair kinetics in a magnetic field”, Molecular Physics, Vol. 90, 289-296, 1997.
    [25] U. Till, C. R. Timmel, B. Brocklehurst, P. J. Hore, “The influence of very small magnetic fields on radical recombination reactions in the limit of slow recombination”, Chemical Physics Letters, Vol. 298, 7- 14, 1998
    [26] W. Wiltschko, R. Wiltschko, ”Magnetic compass of European robins”, Science, Vol. 176, 62-64, 1972.
    [27] W. Wiltschko, R. Wiltschko, “Magnetic orientation in birds”, The Journal of Experimental Biology, Vol. 199, 29-38, 1996.
    [28] W. Wiltschko, R. Wiltschko, “Avian navigation: from historical to modern concepts”, animal behaviour, Vol. 65, 257-272, 2003.
    [29] 劉小峰, 史遠, “鳥類磁感受的生物物理機制研究進展”,生物物理學報, Vol. 25, 247-254, 2009.
    [30] 卡司塔維奇(Davide Castelvecchi), “科學人雜誌”, 第122期, 遠流出版公司, 30-35, 2012.
    [31] 楊憲東, “奈微系統量子論”, 課程講義, 2014.

    無法下載圖示 校內:2016-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE