簡易檢索 / 詳目顯示

研究生: 陳藝介
Chen, Yi-Chieh
論文名稱: 應用晶格波茲曼法結合大渦流模擬流過複雜形狀渠道之強制熱對流問題
Application of Lattice Boltzmann Method with Large Eddy Simulation to Forced Convective Heat Transfer of Complex Geometrical Channel Flows
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 162
中文關鍵詞: 晶格波茲曼法大渦模擬強制對流熱傳紊流渠道流
外文關鍵詞: lattice Boltzmann method, large eddy simulation, convective heat transfer, turbulent channel flow
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用晶格波茲曼法結合大渦流模擬方法,來模擬具障礙物之二維複雜形狀渠道的強迫熱對流特性分析,文中討論雷諾數以及障礙物對速度場和溫度場的局部影響。由於晶格波茲曼方法計算算則尚在發展中。目前研究大多集中在低雷諾數的流場分析,本文透過特殊邊界條件處理方法以及結合大渦流方法,模擬高雷諾數的二維流場,並探討其強迫熱對流特性和現象。大渦數值模擬,主要是把物理量分成大尺度以及小尺度,先求解大尺度的物理量,再建立模型來近似小尺度的擾動,亦即亞格子模型。本文採用最簡單的亞格子渦黏以及渦擴散模型,並使用Smagorinsky模式來得到渦黏及渦擴散係數,此模型在工程應用上已廣泛被接受且具有相當程度的精確度。
    本文所模擬的問題,包含不同障礙物置於突擴渠道流、擴張渠道流、雙擴張渠道流以及週期性邊界渠道流,對流場和熱傳特性影響之情況。流場假設為不可壓縮流,模擬的範圍涵蓋了層流以及紊流。本文特別討論障礙物在流場中放置位置對改變流體的流動路徑,及障礙物後側形成環狀迴流區,影響下游流體流動之變化,探討增強局部區域內的熱傳強度可行性。結果顯示置有障礙物區段其摩擦係數會提升,熱對流效應也會增強。改變雷諾數及普朗特數對表面摩擦係數及紐賽數的影響結果顯示,提升雷諾數及普朗特數皆可以增加其對流熱傳之效應。適當之障礙物尺寸和置放位置對熱流特性之影響相當顯著。

    This study uses the lattice Boltzmann method (LBM) to investigate the forced turbulent heat transfer phenomena in two-dimensional channel flows with complex geometrical boundaries. Because the LBM is originally developed for fluid flows at low Reynolds number, this research combines the large eddy simulation (LES) with the LBM to solve the turbulent heat transfer phenomena at high Reynolds number. The LES decomposes the turbulent flow field into large and small scale parts. The former part is solved by Navier-Stokes equation, while the later part is solved by a sub-grid scale (SGS) model. The SGS model used in this study is the convenient Smagorinsky model, which includes vortex viscous and vortex diffusive forms. The present research simulates channel flows with different geometrical boundaries, including expanded, suddenly expanded, double expanded and sinusoidal wavy boundaries. The effects of inserting obstacles in the channel on the heat transfer rate and skin-friction coefficient of the channel flows are analyzed.

    摘要 I 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號表 XXIV 第一章、緒論 1 1-1. 晶格波茲曼法之簡介 1 1-2. 晶格波茲曼法之文獻回顧 3 1-3. 大渦模擬法之文獻回顧 5 1-4. 本文架構 7 第二章、晶格波茲曼方法的基本理論 8 2-1. 晶格波茲曼法理論 8 2-2. 晶格波茲曼法D2Q9模型與巨觀方程式 9 2-3. 晶格波茲曼法之熱模型 21 2-3-1. He之熱模型 21 2-3-2. Peng之熱模型 26 2-4. 邊界處理方法 29 2-4-1. 邊界格點判別法 29 2-4-2. 速度與壓力邊界 30 2-4-3. 熱模型邊界 33 第三章、晶格波茲曼方法結合大渦流模擬的理論方法 38 3-1. 大渦模擬的基本理論 38 3-2. 大渦模擬的統御方程式 40 3-3. 亞格子模型 42 3-4. 大渦模擬結合晶格波茲曼方法 45 3-5程式流程及驗證 51 3-5-1 程式流程 51 3-5-2 程式驗證 51 第四章、數值模擬實例之結果與討論 56 4-1. 模擬問題簡介 56 4-2. 後處理、收斂準則及邊界條件處理之介紹 56 4-2-1. 後處理介紹 56 4-2-2. 收斂準則之介紹 60 4-2-3. 時間平均處理 60 4-2-4. 統御方程式及邊界條件設定 62 4-3. 結果與討論 64 4-3-1. 突擴渠道流之結果與討論 64 4-3-2. 擴張渠道流之結果與討論 70 4-3-3. 雙擴張渠道流之結果與討論 75 4-3-4. 週期性邊界渠道流之結果與討論 80 第五章、結論與未來展望 156 5-1. 結論 156 5-2. 建議與未來展望 158 參考文獻 159

    Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
    Alawadhi, E. M., “Forced Convection Flow in a Wavy Channel With a Linearly Increasing Waviness at the Entrance Region”, Journal of Heat Transfer, Vol. 131, pp. 011703-1 - 011703-7, 2009.
    Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
    Chapman, S.,& Cowling, T.G., “The mathematical theory of non-uniform gases”, Cambridge: Cambridge University Press, 1970.
    Chang,S.C& Yang,Y.T.& Chen,C.K .&Chen,W.L., “Application of the lattice Boltzmann method combined with large-eddy simulations to turbulent convective heat transfer” Vol. 66, pp.338–348,2013
    Chang, S.C., “Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm”, Journal of the Chinese Society of Mechanical Engineers, Vol.32, No.6, pp.523-531, 2011.
    Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
    Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
    Chen, H.,& Kandasamy, s.,& Orszag,s., et al., ” Extended Boltzmann Kinetic Equation for Turbulent Flows”, Science , Vol.301, pp.633-636., 2003.
    Chen, S., ” A large-eddy-based lattice Boltzmann model for turbulent flow simulation”, Applied Mathematics and Computation, Vol. 215, pp. 591–598, 2009.
    Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
    D Chatterjee, B Mondal, “Mixed convection heat transfer from tandem square cylinders for various gap to size ratios”, Numerical Heat Transfer, Vol. 63, pp. 101-119, 2013
    Deardoff, J. W., ”The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence”,ASME J. Fluid Engineering, Vol. 95,pp. 429-438,1973.
    Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
    Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
    Guan, H., & Wu, C., ” Large-Eddy Simulations of turbulent flows with lattice Boltzmann dynamics and dynamical system sub-grid models “, Sci China Ser E-Tech Sci, vol. 52 , no. 3 ,pp. 670-679 , 2009.
    Higuera, F. J.,& Jimenez J., “Boltzmann approach to lattice gas simulations.” Europhysics Letters, Vol. 9(7), pp. 663–668, 1989.
    Hou, S.,& Sterling, J.,& Chen, S., and Doolen, G. D., “A lattice Boltzmann subgrid model for high Reynolds number flows,” in Pattern Formation and Lattice Gas Automata, edited by A. T. Lawniczak and R. Kapral, Fields Institute Communications Vol. 6 (AMS, Providence), pp. 151–166, 1996.
    He, X.,& Luo, L.-S., ”A priori derivation of the lattice Boltzmann equation”, Phys. Rev. E, Vol. 55, pp. R6333- R6336, 1997.
    He, X.,& Luo, L.-S., “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, Vol. 56, pp. 6811-6817 , 1997.
    He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
    McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
    Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
    Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
    Rush, T. A.,& Newell, T.A.,& Jacobi, A.M., “An experimental study of flow and heat transfer in sinusoidal wavy passages”, Int. J. Heat Mass Transfer, Vol. 42, 1541-1553, 1999.
    Raabe, D., “Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering”, Modelling and Simulation in Materials Science and Engineering, Vol.12 , pp. R13-R46, 2004.
    Smagorinsky, J., "General circulation experiments with the primitive equations, i. the basic experiment. Monthly Weather Review", Vol. 91: pp 99-164, 1963.
    Shan, X. & Chen, H., “Lattice Boltzmann model for simulating flows with multiple phases and components.” Phys. Rev. E, Vol. 47, pp. 1815-1819, 1993.
    Shan, X, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
    Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
    Wang, C.C. & Chen, C.K., “Forced convection in a wavy-wall channel”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 2587-2595., 2002
    Yu, H.,& Luo, L. S., & Girimaji, S S., “Scalar mixing and chemical reaction simulations using lattice Boltzmann method”, International Journal of Computational Engineering Science, Vol.3, pp.73-87, 2002.
    Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
    Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
    陳維霖,”應用晶格波茲曼法結合大渦法模擬紊流強制對流熱傳問題”,國立成功大學碩士論文,2012
    郭照立&鄭楚光,”格子Boltzmann方法的原理及應用”,北京:科學出版社,2008。
    何雅玲&王勇&李慶,“格子Boltzmann方法的理論及應用”,北京:科學出版社,2008。
    孫私于,”應用晶格波茲曼法與場協同理論於流過具障礙物之渠道熱流分析”,國立成功大學碩士論文,2006
    張兆順&崔桂香&許春曉,“湍流大渦數值模擬的理論和應用”,清華大學出版社,2008

    下載圖示 校內:2016-09-01公開
    校外:2017-10-01公開
    QR CODE