| 研究生: |
韓旻坊 Han, Min-fang |
|---|---|
| 論文名稱: |
平板型微擴流器整流效率之實驗研究 Experimental Study of the Rectification Efficiency of Planar Microdiffusers |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 羅緒科數 、整流效率 、微擴流器閥 |
| 外文關鍵詞: | rectification efficiency, microdiffuser value, Roshko number |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在設計與製造平板型微擴流器閥在非穩態流場下之整流效率測試平台,流體之驅動係使用陶瓷壓電致動器與PDMS薄膜的結合,並利用CCD雷射位移感測器來量測薄膜的位移,繼而得知致動腔體之體積變化量,另ㄧ方面在擴流器出口處量測淨流量。所量測之結果可用以計算微擴流器閥之整流效率。本研究針對頸部寬度為200μm,長度為3000μm,深度約為200μm,擴張角為10°~40°之平板型微擴流器,工作流體為甲醇,致動頻率範圍為2~100Hz,所對應之羅緒科數(Roshko number)為0.11~5.71進行量測。量測結果發現,四種角度的微擴流器閥都具有正向整流效率。其中當微擴流器之擴張角為100,羅緒科數(Roshko number)為2.29時,整流效率最佳,約為23.25%。
The purpose of the present study is to design and fabricate the test platform used for measuring the rectification efficiency of planar micro-diffuser valves under an unsteady flow field. The fluid is pumped and filmed with a stacked-type PZT. The displacement of the actuator is measured by a CCD laser displacement sensor so that volumetric variation of the chamber can be obtained. The net volumetric flow rate of the diffuser valve is also measured and used to calculated the rectification efficiency of the diffuser valve. The diffusers are designed with a throat width of 200μm and four different diverging angle of 10°~40°. The length and the depth of the diffuser are 3000μm and 200 μm, respectively. Methanol is used as the test fluid. The actuation frequency is ranged between 2 and 100 Hz resulting in the Roshko number between 0.11~5.71. Experimental results show that all the tested diffusers have positive rectification efficiency. The maximum rectification efficiency about 23.25% occurs at 10°-diffuser operating at the Roshko number of 2.29.
[1] Idelchik I E, Handbook of Hydraulic Resistance, third ed., CRC Press, Boca Raton, FL (1994).
[2] White F M, Fluid Mechanics, fifth ed., McGraw-Hill, Singapore (1999).
[3] Artyushkina G K, On the hydraulic resistance during laminar fluid flow in conical diffusers, Tr. LPI no. 333, 104-106(1973).
[4] Smith L, Micromachined nozzles fabricated with a replicative method, 2nd Workshop on Micromachining, Micromechanics and Microsystems “Micromechanics Europe ‘90”, Berlin, Germany (1990).
[5] Stemme E, Stemme G, A valveless diffuser/nozzle fluid pump, Sensors and Actuators, A 39, 159-167(1993).
[6] Gerlach T, Wurmus H, Working principle and performance of the dynamic micropump, Sensors and Actuators ,A 50, 135-140(1995).
[7] Olsson A, Enoksson P, Stemme G, and Stemme E, Micromachined diffuser/nozzle elements for valve-less pumps, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 378-383 (1996).
[8] Olsson A, Enoksson P, Stemme G, and Stemme E, An improved valve-less pump fabricated using deep reactive ion etching, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 479-484 (1997).
[9] Olsson A, Stemme G, and Stemme E, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors and Actuators, A 84, 165-175 (2000).
[10] Gerlach T, Microdiffusers as dynamic passive valves for micropump applications, Sensors and Actuators, A 69, 181-191 (1998).
[11] Y-H Lee, T-G Kang, and Y-H Cho, Characterization of bidirectionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers, proc. Micro Electro Mechanical Systems Workshop, 403-408(2000).
[12] J-H Kim, Y-S Kim, and C-J Kang, A Disposable Polydimethyl- siloxane-bvased diffuser micropump actuated by piezoelectric-disc, Microelectronic Engineering, vol.71, 119-124 (2004).
[13] Yamahata C, Lotto C, Al-Assaf E, Gijs M A M, A PMMA valveless micropump using electromagnetic actuation, Microfluid Nanofluid 1, 197-207 (2005).
[14] Xia F, Tadigadapa S, Zhang Q-M, Electroactive polymer based microfluidic pump, Sensors and Actuators, A 125, 346-352(2006).
[15] Sun C-L, Huang K-H, Numerical characterization of the flow rectification of dynamic microdiffusers, Journal of Micromechanics and Microengineering, 16, 1331-1339(2006).
[16] Jiang X N, Zhou Z Y, Huang X Y, Li Y, Yang Y, Liu CY, Micronozzle/diffuser flow and its application in micro valveless pumps, Sensors and Actuators ,A 70, 81-87(1998).
[17] Singhal V, Garimella S V, Murthy J Y, Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps, Sensors and Actuators A 113, 226-235(2004).
[18] Campbell D J, Beckman K J, Caderon C E, Doolan P W, Moore R H, Ellis A Band Lisensky G C, Replication and compression of bulk surface structures with polydimethysiloxane elastomer, Journal of Chemical Education, 76, 537(1999).
[19] Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P, Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves, Sensors and Actuators, A 113, 128-140 (2007).
[20] 吳郎,電子陶瓷-壓電,全新圖書公司民國83年12月.
[21] 林世航,圓錐型微擴流器之暫態流場數值模擬,國立成功大學機械工程研究所碩士論文(2007).
[22] 林三寶,雷射原理與應用,全華科技圖書公司2005年6月.