簡易檢索 / 詳目顯示

研究生: 李竑均
Lee, Hung-Chun
論文名稱: 利用晶格匹配模板成長氮化矽介電層於矽基板上
Crystalline Matched Template for Silicon Nitride Growth on Silicon Substrate
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 矽基板濕式化學清潔氮化矽薄膜矽簇團光致螢光光譜掃描式光電子能譜
外文關鍵詞: silicon nitride, silicon cluster, photoluminescence, scanning photoelectrons microscopy
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為利用MBE系統成長晶圓尺寸之超薄單晶氮化矽薄膜(β-Si3N4),並於PECVD成長之非晶氮化矽(a-SiNx)與矽基板Si(111)之間加入超薄單晶氮化矽薄膜,藉由非晶氮化矽薄膜於真空破片(in situ cleaved)之切面(cross section)同步輻射光掃描式光電子能譜的量測,獲得薄膜原子間鍵結及組成資訊,並利用光致螢光光譜(PL)測量,我們發現超薄單晶氮化矽薄膜的加入能有效抑制PECVD成長非晶氮化矽時從矽基板所擴散之矽簇團(Si cluster);並建立矽基板與非晶氮化矽異質接面之能帶結構。

    The wafer scale epitaxial crystalline β-Si3N4 ultrathin film, grown by molecular beam epitaxy (MBE), was use as a template for dielectric amorphous silicon nitride (a-SiNx) growth on silicon substrate. Comparing the thick a-SiNx films (1 μm) grown by the plasma enhanced chemical vapor deposition (PECVD) with and without β-Si3N4 buffer layer, the effects of the crystalline matched template were studies by in situ cleaved scanning photoelectron microscopy/spectroscopy (SPEM/S) technique on their interfacial band structures and chemical compositions. In addition, the defect structures within the a-SiNx films were determined by using photoluminescence (PL) measurements. We found that the ultrathin β-Si3N4 buffer layer can effectively inhibit the Si cluster diffuse from silicon substrate while PECVD growth. The formation of silicon cluster in a-SiNx films would change the band alignment and bending of the a-SiNx/Si heterojunction.

    目錄 第一章 緒論…………………………………………………….1 1.1前言……………………………………………...………………………1 1.2氮化矽的成長…………………………………………………………..2 1.2.1 成長方式…………………………..…….…………………………………..2 1.2.2 β-Si3N4/Si(111)的相關研究………………………………………………...3 1.3小結……………………………………………………………………...5 第二章 實驗儀器原理………………………………………….6 2.1電漿輔助式分子束磊晶(PAMBE)…………………………………….6 2.1.1電漿……………………………………………………………………………….7 2.1.2成長機制………………………………………………………………………….8 2.2 反射式高能電子繞射儀(RHEED)…………………………………..10 2.3電漿增強化學氣相沉積(PECVD)……………………………………13 2.4光電子能譜學………………………………………………………….15 2.4.1同步輻射光……………………………………………………………………...15 2.4.2光電子能譜與掃描式光電子能譜……………………………………………...16 2.5光致螢光光譜(PL)……………………………………………………..18 第三章 實驗方法與量測……………………………………...20 3.1樣品製備……………………………………………………………….20 3.1.1 矽基板Si(111)處理……..……………………..……………………………….20 3.1.2製備Si(111)7x7表面……………………………………………………………23 3.1.3氮化製作β-Si3N4/Si(111)………………………………………………………..24 3.1.4製備a-SiN_x/β-Si3N4/Si(111);a-SiN_x/Si(111)……………………..24 3.2實驗操作與量測 ……………………………………………………….25 3.2.1反射式高能電子繞射儀(RHEED)即時量測…………………………………..25 3.2.2掃描式電子顯微鏡拍攝(SEM)…………………………………………………25 3.2.3原子力顯微鏡掃描(AFM)……………………………………………………...25 3.2.4光電子能譜量測(SPEM)……………………………………………………….26 3.2.5 光致螢光光譜(PL)……………………………………………………………..27 3.2.6 截距法Average Grain Intercept (AGI) Method…………………………….27 第四章 實驗分析與討論……………………………………...29 4.1 RHEED、SEM與AFM影像分析………………………………….29 4.1.1有機溶劑清洗法之基板所成長的β-Si3N4/Si(111)……………………………29 4.1.2化學清洗法之基板所成長的β-Si3N4/Si(111)…………………………………37 4.1.3 RCA清洗法之基板所成長的β-Si3N4/Si(111)………………………………40 4.1.4 a-SiN_x/β-Si3N4/Si(111);a-SiN_x/Si(111)………………………49 4.1.5 小結……………………………………………………………………………..51 4.2 截距法(AGI)之Island size分析…………………………………….52 4.2.1 9000C 2 min之β-Si3N4/Si(111) AGI計算…………………………………...53 4.2.2 9000C 6 min之β-Si3N4/Si(111) AGI計算……………………………………54 4.2.3 9250C 3min之β-Si3N4/Si(111) AGI計算…………………………………….55 4.2.4 小結……………………………………………………………………………56 4.3 光電子能譜與PL光譜分析…………………………………………..57 4.3.1 a-SiN_x/β-Si3N4/Si(111);a-SiN_x/Si(111)之光電子能譜分析…………57 4.3.2 a-SiN_x/β-Si3N4/Si(111);a-SiN_x/Si(111)之PL光譜分析……………….…61 4.3.3 a-SiN_x/β-Si3N4/Si(111)模型建立與能帶結構……………………………63 第五章 總結……………………………………………….......67 參考文獻……………………………………………...…………69

    參考文獻
    [1] F.S.S. Chien, J.W. Chang, S.W. Lin, Y.C. Chou, T.T. Chen, S. Gwo, T.S. Chao, W.F. Hsieh, Nanometer-scale conversion of Si 3 N 4 to SiO x, Applied Physics Letters, 76 (2000) 360.
    [2] C.C. Chen, C.Y. Chang, C.H. Chien, T.Y. Huang, H.C. Lin, M.S. Liang, Temperature-accelerated dielectric breakdown in ultrathin gate oxides, Applied Physics Letters, 74 (1999) 3708.
    [3] C.E. Morosanu, The preparation, characterization and applications of silicon nitride thin films, Thin Solid Films, 65 (1980).
    [4] U.K. W. Skorupa, H. Oertal, Properties of epitaxial silicon layers on buried silicon nitride produced by ion implantation, Vacuum, 36 (1986).
    [5] C.-L. Wu, J.-C. Wang, M.-H. Chan, T.T. Chen, S. Gwo, Heteroepitaxy of GaN on Si (111) realized with a coincident-interface AlN/β-Si3N4 (0001) double-buffer structure, Applied Physics Letters, 83 (2003) 4530.
    [6] N. Yamabe, H. Shimomura, T. Shimamura, T. Ohachi, Nitridation of Si (111) for growth of 2H-AlN (0001)/β-Si< sub> 3</sub> N< sub> 4</sub>/Si (111) structure, Journal of Crystal Growth, 311 (2009).
    [7] A. Wierzbicka, Z.R. Zytkiewicz, S. Kret, J. Borysiuk, P. Dluzewski, M. Sobanska, K. Klosek, A. Reszka, G. Tchutchulashvili, A. Cabaj, E. Lusakowska, Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si (111) substrate, Nanotechnology, 24 (2013) 035703.
    [8] 羅正忠, 半導體製程技術導論, 台灣培生教育出版, (2002).
    [9] J. Yota, J. Hander, A.A. Saleh, A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18 (2000) 372.
    [10] C.L. Wu, J.L. Hsieh, H.D. Hsueh, S. Gwo, Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy, Physical Review B, 65 (2002).
    [11] H.K.F. R.Yang, I.Ab.Rahman,I. Saleh, 12 Two phase refinements of the structures of α-Si3N4 and β-Si3N4 made from rice husk by Rietveld analysis, Ceramics International, 21 (1995) 137.
    [12] Y.-N. Xu, W. Ching, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, Physical Review B, 51 (1995) 17379-17389.
    [13] S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani, A comparative ab initio study of the ‘ideal’ strength of single crystal α- and β-Si3N4, Acta Materialia, 52 (2004) 233-238.
    [14] M.A. Herman, H. Sitter, Molecular beam epitaxy: fundamentals and current status, Springer-Verlag Berlin, 1989.
    [15] W. Braun, Applied RHEED: reflection high-energy electron diffraction during crystal growth, Springer, 1999.
    [16] 國家同步輻射研究中心, Synchrotron-Radiation, in, http://www.nsrrc.org.tw/, 2010.
    [17] H. Hertz, On the photoelectric effect, Ann Phys, 31 (1887) 983-1000.
    [18] A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, 323 (1905) 639-641.
    [19] 王江綸, 石墨烯在金塗層的氧化矽基板上其殼層光電子顯微能譜的研究, 成功大學物理學系學位論文, (2012) 1-44.
    [20] Y.-F.L. Jia-Min Shieh, Yong-Chang Lin, Jr-Yau Fang, Photoluminescence: Principles, Structure and Applications, 奈米通訊, 12.
    [21] Y.S. Akitoshi Ishizaka, Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE, 133 (1986).
    [22] K.S. B. Sundaravel, G. Kuri, P.V. Satyam, B.N. Dev,Santanu Bera, S.V. Narasimhan, P. Chakraborty, F. Caccavale, XPS and SIMS analysis of gold silicide grown on a bromine passivated Si111/ substrate, Applied Surface Science, 137 ( 1999) 103-112.
    [23] R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, 1994, PWS-Kent, Boston, (1994) 3.
    [24] P. Pundur, J. Shavalgin, V. Gritsenko, On the nature of deep centres responsible for the memory effect and luminescence of a‐SiNx with x≦ 4/3, physica status solidi (a), 94 (1986) K107-K112.
    [25] Y. Wang, D. Shen, Y. Liu, J. Zhang, Z. Zhang, Y. Liu, Y. Lu, X. Fan, Visible photoluminescence of Si clusters embedded in silicon nitride films by plasma-enhanced chemical vapor deposition, Physica E: Low-dimensional Systems and Nanostructures, 27 (2005) 284-289.
    [26] K.S.Z. V.A. Gritsenkoa, A.D. Milovb, Hei Wongc, R.W.M. Kwokd, J.B. Xue, Silicon dots/clusters in silicon nitride: photoluminescence and electron spin resonance, Thin Solid Films 353 (1999) 4.
    [27] Z. Pei, H.L. Hwang, Formation of silicon nano-dots in luminescent silicon nitride, Applied Surface Science, 212-213 (2003) 760-764.
    [28] B.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G.Y. Sung, S.-J. Park, Photoluminescence of silicon quantum dots in silicon nitride grown by NH[sub 3] and SiH[sub 4], Applied Physics Letters, 86 (2005) 091908.
    [29] A. Iqbal, W.B. Jackson, C.C. Tsai, J.W. Allen, C.W. Bates, Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy, Journal of Applied Physics, 61 (1987) 2947.
    [30] H.-M. Lee, C.-T. Kuo, H.-W. Shiu, C.-H. Chen, S. Gwo, Valence band offset and interface stoichiometry at epitaxial Si[sub 3]N[sub 4]/Si(111) heterojunctions formed by plasma nitridation, Applied Physics Letters, 95 (2009) 222104.
    [31] F. Himpsel, G. Hollinger, R. Pollak, Determination of the Fermi-level pinning position at Si(111) surfaces, Physical Review B, 28 (1983) 7014-7018.

    無法下載圖示 校內:2019-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE