| 研究生: |
李竑均 Lee, Hung-Chun |
|---|---|
| 論文名稱: |
利用晶格匹配模板成長氮化矽介電層於矽基板上 Crystalline Matched Template for Silicon Nitride Growth on Silicon Substrate |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 矽基板濕式化學清潔 、氮化矽薄膜 、矽簇團 、光致螢光光譜 、掃描式光電子能譜 |
| 外文關鍵詞: | silicon nitride, silicon cluster, photoluminescence, scanning photoelectrons microscopy |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為利用MBE系統成長晶圓尺寸之超薄單晶氮化矽薄膜(β-Si3N4),並於PECVD成長之非晶氮化矽(a-SiNx)與矽基板Si(111)之間加入超薄單晶氮化矽薄膜,藉由非晶氮化矽薄膜於真空破片(in situ cleaved)之切面(cross section)同步輻射光掃描式光電子能譜的量測,獲得薄膜原子間鍵結及組成資訊,並利用光致螢光光譜(PL)測量,我們發現超薄單晶氮化矽薄膜的加入能有效抑制PECVD成長非晶氮化矽時從矽基板所擴散之矽簇團(Si cluster);並建立矽基板與非晶氮化矽異質接面之能帶結構。
The wafer scale epitaxial crystalline β-Si3N4 ultrathin film, grown by molecular beam epitaxy (MBE), was use as a template for dielectric amorphous silicon nitride (a-SiNx) growth on silicon substrate. Comparing the thick a-SiNx films (1 μm) grown by the plasma enhanced chemical vapor deposition (PECVD) with and without β-Si3N4 buffer layer, the effects of the crystalline matched template were studies by in situ cleaved scanning photoelectron microscopy/spectroscopy (SPEM/S) technique on their interfacial band structures and chemical compositions. In addition, the defect structures within the a-SiNx films were determined by using photoluminescence (PL) measurements. We found that the ultrathin β-Si3N4 buffer layer can effectively inhibit the Si cluster diffuse from silicon substrate while PECVD growth. The formation of silicon cluster in a-SiNx films would change the band alignment and bending of the a-SiNx/Si heterojunction.
參考文獻
[1] F.S.S. Chien, J.W. Chang, S.W. Lin, Y.C. Chou, T.T. Chen, S. Gwo, T.S. Chao, W.F. Hsieh, Nanometer-scale conversion of Si 3 N 4 to SiO x, Applied Physics Letters, 76 (2000) 360.
[2] C.C. Chen, C.Y. Chang, C.H. Chien, T.Y. Huang, H.C. Lin, M.S. Liang, Temperature-accelerated dielectric breakdown in ultrathin gate oxides, Applied Physics Letters, 74 (1999) 3708.
[3] C.E. Morosanu, The preparation, characterization and applications of silicon nitride thin films, Thin Solid Films, 65 (1980).
[4] U.K. W. Skorupa, H. Oertal, Properties of epitaxial silicon layers on buried silicon nitride produced by ion implantation, Vacuum, 36 (1986).
[5] C.-L. Wu, J.-C. Wang, M.-H. Chan, T.T. Chen, S. Gwo, Heteroepitaxy of GaN on Si (111) realized with a coincident-interface AlN/β-Si3N4 (0001) double-buffer structure, Applied Physics Letters, 83 (2003) 4530.
[6] N. Yamabe, H. Shimomura, T. Shimamura, T. Ohachi, Nitridation of Si (111) for growth of 2H-AlN (0001)/β-Si< sub> 3</sub> N< sub> 4</sub>/Si (111) structure, Journal of Crystal Growth, 311 (2009).
[7] A. Wierzbicka, Z.R. Zytkiewicz, S. Kret, J. Borysiuk, P. Dluzewski, M. Sobanska, K. Klosek, A. Reszka, G. Tchutchulashvili, A. Cabaj, E. Lusakowska, Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si (111) substrate, Nanotechnology, 24 (2013) 035703.
[8] 羅正忠, 半導體製程技術導論, 台灣培生教育出版, (2002).
[9] J. Yota, J. Hander, A.A. Saleh, A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18 (2000) 372.
[10] C.L. Wu, J.L. Hsieh, H.D. Hsueh, S. Gwo, Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy, Physical Review B, 65 (2002).
[11] H.K.F. R.Yang, I.Ab.Rahman,I. Saleh, 12 Two phase refinements of the structures of α-Si3N4 and β-Si3N4 made from rice husk by Rietveld analysis, Ceramics International, 21 (1995) 137.
[12] Y.-N. Xu, W. Ching, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, Physical Review B, 51 (1995) 17379-17389.
[13] S. Ogata, N. Hirosaki, C. Kocer, Y. Shibutani, A comparative ab initio study of the ‘ideal’ strength of single crystal α- and β-Si3N4, Acta Materialia, 52 (2004) 233-238.
[14] M.A. Herman, H. Sitter, Molecular beam epitaxy: fundamentals and current status, Springer-Verlag Berlin, 1989.
[15] W. Braun, Applied RHEED: reflection high-energy electron diffraction during crystal growth, Springer, 1999.
[16] 國家同步輻射研究中心, Synchrotron-Radiation, in, http://www.nsrrc.org.tw/, 2010.
[17] H. Hertz, On the photoelectric effect, Ann Phys, 31 (1887) 983-1000.
[18] A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, 323 (1905) 639-641.
[19] 王江綸, 石墨烯在金塗層的氧化矽基板上其殼層光電子顯微能譜的研究, 成功大學物理學系學位論文, (2012) 1-44.
[20] Y.-F.L. Jia-Min Shieh, Yong-Chang Lin, Jr-Yau Fang, Photoluminescence: Principles, Structure and Applications, 奈米通訊, 12.
[21] Y.S. Akitoshi Ishizaka, Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE, 133 (1986).
[22] K.S. B. Sundaravel, G. Kuri, P.V. Satyam, B.N. Dev,Santanu Bera, S.V. Narasimhan, P. Chakraborty, F. Caccavale, XPS and SIMS analysis of gold silicide grown on a bromine passivated Si111/ substrate, Applied Surface Science, 137 ( 1999) 103-112.
[23] R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, 1994, PWS-Kent, Boston, (1994) 3.
[24] P. Pundur, J. Shavalgin, V. Gritsenko, On the nature of deep centres responsible for the memory effect and luminescence of a‐SiNx with x≦ 4/3, physica status solidi (a), 94 (1986) K107-K112.
[25] Y. Wang, D. Shen, Y. Liu, J. Zhang, Z. Zhang, Y. Liu, Y. Lu, X. Fan, Visible photoluminescence of Si clusters embedded in silicon nitride films by plasma-enhanced chemical vapor deposition, Physica E: Low-dimensional Systems and Nanostructures, 27 (2005) 284-289.
[26] K.S.Z. V.A. Gritsenkoa, A.D. Milovb, Hei Wongc, R.W.M. Kwokd, J.B. Xue, Silicon dots/clusters in silicon nitride: photoluminescence and electron spin resonance, Thin Solid Films 353 (1999) 4.
[27] Z. Pei, H.L. Hwang, Formation of silicon nano-dots in luminescent silicon nitride, Applied Surface Science, 212-213 (2003) 760-764.
[28] B.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G.Y. Sung, S.-J. Park, Photoluminescence of silicon quantum dots in silicon nitride grown by NH[sub 3] and SiH[sub 4], Applied Physics Letters, 86 (2005) 091908.
[29] A. Iqbal, W.B. Jackson, C.C. Tsai, J.W. Allen, C.W. Bates, Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy, Journal of Applied Physics, 61 (1987) 2947.
[30] H.-M. Lee, C.-T. Kuo, H.-W. Shiu, C.-H. Chen, S. Gwo, Valence band offset and interface stoichiometry at epitaxial Si[sub 3]N[sub 4]/Si(111) heterojunctions formed by plasma nitridation, Applied Physics Letters, 95 (2009) 222104.
[31] F. Himpsel, G. Hollinger, R. Pollak, Determination of the Fermi-level pinning position at Si(111) surfaces, Physical Review B, 28 (1983) 7014-7018.
校內:2019-09-02公開