簡易檢索 / 詳目顯示

研究生: 王家豪
Wang, Jia-Hao
論文名稱: 利用奈米壓印微影術和金屬輔助化學蝕刻製作週期性奈米圓錐結構應用於寬頻完美吸收體
Fabrication of Periodic Nanocones by Nanoimprint Lithography and Metal-assisted Chemical Etching for Wideband Perfect Absorption
指導教授: 林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 金屬輔助化學蝕刻矽奈米結構奈米圓錐完美吸收
外文關鍵詞: Metal-assisted Chemical Etching, nanocones, UV-nanoimprint, perfect absorbers
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出利用奈米壓印技術及金屬輔助化學蝕刻方式製造週期性奈米圓錐結構應用於金屬表面完美吸收體。金屬表面擁有高反射的特性,但若要將完美吸收表面利用於光吸收的光電元件,那我們就需要金屬表面作為電極,但金屬表面所要面臨的第一個難關就是要降低金屬表面反射的問題。首先我們先選擇擁有良好寬頻吸收特性的奈米圓錐光子奈米結構,再結合介電質與金屬表面電漿共振所造成的異常吸收特性,去加強光子奈米結構金屬表面的寬頻吸收效果,促使我們能將光能更好的侷限在我們的材料中進一步的被我們利用。
    利用奈米壓印技術與金屬輔助化學蝕刻製作的奈米圓錐金屬表面,可以根據實驗需求改變圖案週期與深寬比,在整個製程中達到低成本、快速與可重複利用的生產訴求。文中不僅討論金屬輔助化學蝕刻溶液濃度變化造成不同結構的產生,本文主要對於奈米柱陣列與奈米圓錐陣列的反射結果進行討論,我可以得到在相近的深寬比下,奈米圓錐結構的抗反射性是優於奈米柱結構的,所以最後我們使用奈米壓印微影術在聚苯乙烯上壓印奈米圓錐結構,並於上層沉積一層金屬使及產生表面電漿效果,最後我們利用925 nm的圓錐結構,並在表面沉積100 nm的金,最後積分球測量結果為在光波長500 nm至1000 nm間吸收率更是達到81.86%。

    In this master thesis, We propose UV-nanoimprint lithography was employed to pattern the periodic nanostructure of noble metal, because of its cost-efficiency and simplicity. And then we adjusted etching time and ethanol ratio of Metal-assisted chemical etching (MACE) to control the aspect ratio of the nanocones. Then, we used the nanocone structure to imprint on the PS substrate and deposition Au on the surface to achieve the light trapping. Finally, we successfully limited the light energy to the Au-PS nanocone with a height of about 925nm. In the optical measurement, the absorption rate in the 500~1000nm band reaches 81.86%%.

    口試證明 I 摘要 II Fabrication of Periodic Nanocones by Metal-assisted Chemical Etching for Metamaterial of Wideband Perfect Absorber III 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 2 第二章 文獻回顧 3 2.1 金屬輔助化學蝕刻 3 2.2 光子奈米結構 5 2.3 表面電漿 6 2.4 寬頻完美吸收體 7 第三章 研究方法 17 3.1 光子奈米結構製作 17 3.1.1 矽母模具製作 17 3.1.1.1 實驗材料 17 3.1.1.2 實驗儀器 17 3.1.1.3 實驗流程 18 3.1.2 全氟聚醚軟模具製作 18 3.1.2.1 實驗材料 18 3.1.2.2 實驗儀器 19 3.1.2.3 實驗流程 19 3.1.3 矽奈米圓錐模具製作 20 3.1.3.1 奈米壓印微影術 20 3.1.3.2 金屬輔助化學蝕刻 23 3.2 聚苯乙烯奈米圓錐結構製作 25 3.2.1 實驗材料 25 3.2.2 實驗儀器 25 3.2.3 實驗流程 25 3.3 APNC結構的光學性質量測 26 3.3.1 正向入射光穿透頻譜量測 26 3.3.1.1 實驗材料 27 3.3.1.2 實驗儀器 27 3.3.1.3 實驗流程 27 3.3.2 正向入射光反射頻譜量測 28 3.3.2.1 實驗材料 28 3.3.2.2 實驗儀器 28 3.3.2.3 實驗流程 28 3.3.3 斜向入射反射光頻譜量測 29 3.3.3.1 實驗材料 29 3.3.3.2 實驗儀器 29 3.3.3.3 實驗流程 29 3.4 數值模擬方法 29 第四章 結果與討論 36 4.1 矽光子奈米結構模具製程 36 4.1.1 奈米壓印微影術 36 4.1.2 金屬輔助化學蝕刻 37 4.2 奈米圓錐結構數值模擬 38 4.2.1 遠場分析 38 4.2.2 近場分析 39 4.3 聚苯乙烯奈米圓錐結構製程 40 4.4 APNC結構光學性質量測 41 第五章 結論與展望 60 5.1 結論 60 5.2 未來展望 60 參考文獻 61

    [1] C. Hu, L. Liu, Z. Zhao, X. N. Chen, and X. Luo, "Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies," Optics express 17, 16745-16749 (2009).
    [2] V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele, "Realization of a silicon nanowire vertical surround‐gate field‐effect transistor," Small 2, 85-88 (2006).
    [3] D. Schurig, J. J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
    [4] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, "Silicon optical modulators," Nature photonics 4, 518-526 (2010).
    [5] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-889 (2007).
    [6] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, "Aligned single‐crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005).
    [7] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. Christiansen, "Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters," Nano Lett. 9, 1549-1554 (2009).
    [8] K. Peng, J. Jie, W. Zhang, and S.-T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Appl. Phys. Lett. 93, 033105 (2008).
    [9] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science 293, 1289-1292 (2001).
    [10] F. Patolsky, G. Zheng, and C. M. Lieber, "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species," Nature protocols 1, 1711 (2006).
    [11] F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, "Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures," Microelectronics journal 36, 673-677 (2005).
    [12] H. Han, Z. Huang, and W. Lee, "Metal-assisted chemical etching of silicon and nanotechnology applications," Nano today 9, 271-304 (2014).
    [13] Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society 123, 3165-3166 (2001).
    [14] B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, "Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy," Nano Lett. 5, 2524-2527 (2005).
    [15] D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, "Preparation of thin porous silicon layers by stain etching," Thin Solid Films 297, 9-12 (1997).
    [16] X. Li and P. Bohn, "Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon," Appl. Phys. Lett. 77, 2572-2574 (2000).
    [17] F. Teng, N. Li, L. Liu, D. Xu, D. Xiao, and N. Lu, "Fabrication of ordered Si nanopillar arrays for ultralow reflectivity," RSC Advances 6, 15803-15807 (2016).
    [18] F. Teng, N. Li, D. R. Xu, D. Y. Xiao, X. C. Yang, and N. Lu, "Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching," Nanoscale 9, 449-453 (2017).
    [19] D. H. Lee, Y. Kim, G. S. Doerk, I. Laboriante, and R. Maboudian, "Strategies for controlling Si nanowire formation during Au-assisted electroless etching," Journal of Materials Chemistry 21, 10359-10363 (2011).
    [20] Y. Kim, A. Tsao, D. H. Lee, and R. Maboudian, "Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching," Journal of Materials Chemistry C 1, 220-224 (2013).
    [21] A. P. Amalathas and M. M. Alkaisi, "Nanostructures for Light Trapping in Thin Film Solar Cells," Micromachines 10, 18 (2019).
    [22] F. F. Wu, G. Shi, H. B. Xu, L. X. Liu, Y. D. Wang, D. P. Qi, and N. Lu, "Fabrication of Antireflective Compound Eyes by Imprinting," Acs Applied Materials & Interfaces 5, 12799-12803 (2013).
    [23] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
    [24] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor," Nano Lett. 10, 2342-2348 (2010).
    [25] R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, "Cavity-enhanced localized plasmon resonance sensing," Appl. Phys. Lett. 97(2010).
    [26] A. A. Jamali and B. Witzigmann, "Plasmonic perfect absorbers for biosensing applications," Plasmonics 9, 1265-1270 (2014).
    [27] C.-H. Lin, J. Shieh, C. Liang, C. Cheng, and Y. Chen, "Decreasing reflection through the mutually positive effects of nanograss and nanopillars," Journal of Materials Chemistry C 2, 3645-3650 (2014).
    [28] D. Huo, J. Zhang, Y. Wang, C. Wang, H. Su, and H. Zhao, "Broadband perfect absorber based on TiN-nanocone metasurface," Nanomaterials 8, 485 (2018).
    [29] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv Mater 23, 285-308 (2011).
    [30] C.-H. Lin, Y.-C. Lin, and C.-C. Liang, "Solid immersion interference lithography with conformable phase mask," Microelectronic engineering 123, 136-139 (2014).
    [31] C. C. Liang, C. H. Lin, T. C. Cheng, J. Shieh, and H. H. Lin, "Nanoimprinting of flexible polycarbonate sheets with a flexible polymer mold and application to superhydrophobic surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
    [32] C.-H. Lin, Y.-M. Lin, C.-C. Liang, Y.-Y. Lee, H.-S. Fung, B.-Y. Shew, and S.-H. Chen, "Extreme UV diffraction grating fabricated by nanoimprint lithography," Microelectronic engineering 98, 194-197 (2012).
    [33] W.-H. Chang, Z.-Y. Yang, T.-W. Chong, Y.-Y. Liu, H.-W. Pan, and C.-H. Lin, "Quantifying Cell Confluency by Plasmonic Nanodot Arrays to Achieve Cultivating Consistency," ACS sensors 4, 1816-1824 (2019).
    [34] C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
    [35] D. P. Edward and I. Palik, "Handbook of optical constants of solids," (Academic, Orlando, Florida, 1985).
    [36] 尤勝加, "以金屬輔助化學蝕刻高深寬比矽奈米結構應用於高效率膀胱上皮癌細胞捕捉," (國立成功大學, 台南市, 2018).

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE