簡易檢索 / 詳目顯示

研究生: 彭勛昆
Peng, Hsun-Kun
論文名稱: 膝下樹脂強化快速原型承筒與殘肢的介面應力分析及步態分析
Gait Analysis and Interface Pressures Between Stump and Resin-Reinforced Rapid Prototyping Socket for Transtibial Amputees
指導教授: 許來興
Hsu, Lai-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 義肢承筒步態分析介面壓力有限元素分析膝下殘肢
外文關鍵詞: Transtibial amputees, Gait analysis, Interface pressures, Finite element analysis, Prosthetic socket
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是藉由步態分析及殘肢與承筒間介面應力之量測實驗,再搭配義肢評估問卷以驗證樹脂強化快速原型承筒之適合程度。樹脂強化快速原型承筒是在快速雛型承筒外包覆一層不飽合聚脂樹脂以增強抗彎曲強度。然而穿著樹脂強化快速原型承筒的舒適及步態仍有待實驗的考驗,實驗的結果將作為義肢裝具師設計品質更佳的承筒之參考。

    步態分析及介面應力分析方法,用來探討患者穿戴手工承筒及樹脂快速原型承筒時行走的狀況。另外,步態實驗取得之腳底受力等資訊導入至有限元素分析(FEA)軟體中,即可估計介面應力;再由FEA的應力值與介面應力量測結果比對,加上步態特性,將可協助承筒設計工作。

    由左腳膝下截肢案例研究,樹脂強化快速原型承筒義肢因尺寸不合腳,左右腳踏步長差異大,造成左右腳的不對稱。介面應力量測實驗結果在受測者在脛骨內側突出處壓力較小及腓骨末端處壓力較大也顯示樹脂快速原型承筒尺寸較受測者的殘肢大;介面應力實驗與FEA結果顯示,各部位壓力峰值誤差值為0.32~17.1%,平均值誤差除了最高誤差的膕窩部(43.16%),其他部位為15.7~30.66%。本研究結果顯示,有限元素分析可有效分析介面應力,提供給義肢裝具師作為設計承筒之參考。

    This study aims to evaluate the fitting conditions of a resin-reinforced rapid prototyping (RP) socket by employing the experimental devices of motion analysis and interface pressure measurement system and questionnaire survey while the specific patient wears the resin-reinforced RP socket. To enhance the flexural strength, the resin-reinforced RP socket was coated with a layer of unsaturated polyester resin on a preliminary RP socket fabricated by a FDM machine,

    To verify whether the alternative type of resin-reinforced RP socket is more comfortable than traditional plaster-based socket, gait analysis and questionnaire survey and interface pressure between stump and socket are introduced in this study. In the experiments, a traditional socket and a resin-reinforced RP socket were alternately worn by a patient, and the gait parameters and interface pressures variation were recorded. Based on the resin-reinforced RP socket model, stump shape, and the reaction force and the other parameters obtained from motion system, the interface pressures at pressure-tolerant (PT) and pressure-relief (PR) areas of stump were simulated by finite element (FE) analysis system. The comparisons on the gait and interface pressures of different socket types can then be made.

    The results of a case study showed that the step length of residual limb and sound limb are very asymmetric when wearing resin-reinforced RP socket, because prosthetic is bigger than stump. Compared to the traditional plaster-based socket, the interface pressures are less at medial tibial flare and higher at fibular end when wearing resin-reinforced socket, this result also shows socket is bigger. The results of interface pressures of FE analysis and experiments denoted that differences of pressures peak about 0.32%~17.1% at all PT and PR areas, and the average differences, except the highest differences at popliteral fossa(43.16%), the other areas are 15.7~30.66%. The study concluded that the results of experiments of gait analysis and interface pressures could assist a prosthetist to design transtibial RP socket.

    摘要 ................................................ I Abstract ............................................... II 誌謝 ....................................................IV 目錄 .................................................... V 圖目錄 ............................................... VIII 表目錄 ............................................... XIII 第一章 緒論 ............................................. 1 1.1 前言 .................................................1 1.2 文獻回顧 ............................................ 3 1.2.1 截肢(Amputation)與義肢(Prosthesis)之簡介 .......... 3 1.2.2 步態分析之簡介 .................................... 5 1.2.3 患者之殘肢與承筒間的介面應力有限元素分析.......... 14 1.3 研究目的 ........................................... 19 第二章 理論基礎 ........................................ 21 2.1 動作分析系統理論基礎 ............................... 21 2.1.1 運動分析 ......................................... 21 2.1.2 動力分析 ......................................... 37 2.2 元素有素分析(FEA)流程簡介 .......................... 41 第三章 實驗設計 ........................................ 43 3.1 樹脂強化快速原型承筒製作 ........................... 43 3.2 實驗設備與方法 ..................................... 54 3.2.1 步態分析實驗設備及校正 ........................... 54 3.2.2 介面壓力量測實驗設備及校正 ....................... 58 3.2.3 實驗步驟 ......................................... 61 3.2.4 實驗數據處理方式 ................................. 67 第四章 殘肢與承筒間介面應力有限元素分析 ................ 69 4.1 介面應力有限元素分析簡介 ........................... 69 4.2 介面應力有限元素分析步驟 ........................... 71 4.2.1 幾何模型建立 ..................................... 71 4.2.2 有限元素模型建立 ................................. 72 4.2.3 材料性質設定 ..................................... 75 4.2.4 接觸條件設定 ..................................... 76 4.2.5 邊界條件設定 ..................................... 78 第五章 實驗與分析結果與討論 ............................ 82 5.1 步態分析結果 ....................................... 82 5.2 義肢承筒與殘肢介面應力結果 ......................... 87 5.3 問卷結果 ........................................... 97 5.4 結果與討論 ......................................... 99 第六章 結論 ........................................... 101 6.1 研究結論 .......................................... 101 6.2 未來展望 .......................................... 102 參考文獻 .............................................. 104 自述 .................................................. 109

    [Fedo 82] Fedors, R. F., Hong, S. D., “A New Technique for Measuring Poisson’s Ratio.”, Journal of Polymer Science: Polymer Physics Edition, vol. 20, pp.777-781, 1982.

    [Ferg 95] Fergason, J., Smith, D. G., “Socket considerations for the patient with a transtibial amputation.”, Clinical Orthopaedics & Related Research, (361):76-84, 1999.

    [Gage 85] Gage, J. R., Hicks, R., “Gait analysis in prosthetics”, Clinical Prosthetics and Orthotics, 9: 3: 17-23, 1985.

    [Gitt 91] Gitter, A., Czerniecki, J. M., DeGroot, D. M., “Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.”, Am J Phys Med Recabil, 70: 142-8, 1991.

    [Goh 84] Goh, J. C. H., Solomonidis, S. E., Spence, W. D., Paul, J. P.,
    “Biomechanical evaluation of SACH and uniaxial feet”, Prosthet Orthot Int. Vol.8, pp. 147-154, 1984.

    [Hann 84] Hannah, R. E., Morrison, J. B., Chapman, A. E., “Prostheses alignment: effect on gait of persons with below-knee amputations.” Archives of Physical Medicine and Rehabilitation,65, 159-162, 1984.

    [Jia 03] Zhang, M., Jia, X., Lee, W. C. C., “Load transfer mechanics between trans-tibial prosthetic socket and residual limb-Dynamic effects.”, Medical Engineering & Physics ,Vol. 25, No. 37, pp. 1371-1377, 2003.

    [Kada 90] Kadaba, M. P., Ramakrishnan, H. K., Wootten, M. E., “Measurement of lower extremity kinematics during level walking.”, J. Orthop. Res. Vol.8, No.3, pp. 383-392, 1990.

    [Kath 08] Kathryn, Z. G., Ellen, J., Mackenzie, Patti L. E, Thomas, G., Travison, R. B., “Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050”, Archives of Physical Medicine and Rehabilitation vol.89, no.3, pp.422-429, 2008.

    [Kay 75] Kay, H. W., Newman, J. D., “Relative incidences of new amputations.”, Orthot Prosthet Vol.29, No.2, pp.3-16, 1975.

    [Matweb] MatWeb, Material peoperty database.
    http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=P98032 (2009 June 12)
    [Orth 01] OrthoTrak 5.0 Gait Analysis Software ,Motion Analysis Corporation 3617 Westwind Blvd. Sanata Rosa, CA, USA 95403, 2001.

    [Perr 92] Perry J., Gait analysis: Normal and pathological function, NJ: Slack Incorporated, 1992.

    [Reyn 92] Reynolds, D. P., Lord, M., “Interface Load Analysis for Computer-Aided Design of Below-Knee Prosthetic sockets.”Medical and Biological Engineering and Computing, Vol. 30, pp. 419-426, 1992.

    [Robi 97] Robinson, J. L., Smidt, G. L., Arora, J. S., “Accelerographic, temporal and distance gait factors in below-knee amputees”, Phys Ther.Vol.57, pp. 898-904, 1977.

    [Sand 93] Sanders, J. E., Daly, C. H., “Normal and Shear Stresses on a Residual Limb in a Prosthetic Socket during Ambulation: Comparison of Finite Element Results with Experimental Measurements.”, Journal of Rehabilitation Research & Development, Vol. 30, No. 2, pp. 191-204, 1993.

    [Sand 95] Sanders, J. E., “Interface mechanics in external prosthetics: review of interface stress measurement techniques.”, Medical & biological engineering & computing, 33: 509-516, 1995.

    [Shur 90] Shurr, D. G., Cook, T. M., Prosthetic and Orthotics. American Prosthetics Inc. 1990.

    [Stee 87] Steege, J. W., Schnur, D. S., “Prediction of Pressure at the Below-Knee Socket Interface by Finite Element Analysis.” ASME Symposium on the Biomechanics of Normal and Pathological Gait, Boston, Vol. l4, pp. 39-43, 1987.

    [Suth 80] Sutherland, D. H., Olshen, R. A., Cooper, L., Woo, S. L. Y., “The development of mature walking”, J Bone Joint Surg, Vol.62-A, No.3, pp. 336-353, 1980.

    [Vaug 92] Vaughan, C. L., Davis, B. L., O’Connor, J. C., "Dynamics of human gait. Illinois, Champaign: Human Kinetics Publishers, 1992.

    [Yass 08] YassineMrabet. Sagittal plane. (2009, February 27). In Wikipedia, The Free Encyclopedia. Retrieved 07:24, April 15, 2009,from http://en.wikipedia.org/w/index.php?title=Sagittal_plane&oldid=273554982

    [Zhan 96] Zhang, M., Turner-Smith, A. R., Roberts, V. C., Tanner, A., “Friction action at lower limb/prosthetic socket interface.” Medical Engineering & Physics, Vol.18, No.3, pp.207-214, 1996.

    [Zhan 97] Zhang, M., Zheng Y. P., Mak, A. F. T., “Estimating the effective Young’s modulus of soft tissues from indentation tests-nonlinear finite element analysis of effects of friction and large deformation.”, Medical Engineering & Physics, Vol.19, No.6, pp.512-517, 1997.

    [Zhan 98] Zhang, M., Mak, A. F. T., Roberts, V. C.. “Finite Element Modeling of a Residual Lower-Limb in a Prosthetic Socket: A Survey of the Development in the First Decade.”, Medical Engineering & Physics, Vol. 20, No. 5, pp. 360-373, 1998.

    [Dona 97] Donald, G. S.,原著,于邦基譯,義肢裝具學,合記圖書出版社,台北市,1999

    [Marc 03] MSC.Patran/Marc培訓課程和實例,美商麥格尼軒股份有限公司台灣分公司,台北,2003。

    [石 03] 石旭生,膝下截肢患者在不同走路速度與穿戴不同義足下之界面壓力與步態分析,國立成功大學醫學工程研究所,碩士論文,2003。

    [林 05] 林罡生,膝下殘肢與義肢承筒在不同行走速度下之介面應力分析,國立成功大學機械工程系,碩士論文,2005。

    [洪 07] 洪大祐,加入預壓條件之有限元素模型模擬膝下殘肢與義肢承筒間之介面壓力分佈,國立成功大學機械工程系,碩士論文,2007。

    [黃 02] 黃國,膝下截肢患者穿戴新型義肢在平地、斜坡和階梯之步態和能量消耗分析,國立成功大學醫學工程研究所,博士論文,2002。

    [黃 03] 黃健,拘束邊界之曲面多樣化編修應用於義肢承筒數位化設計,國立成功大學機械工程系,碩士論文,2003。

    [楊 05] 楊沛霖,膝下殘肢之受壓區與非受壓區與義肢承筒介面壓力之研究,國立成功大學機械工程系,博士論文,2005。

    [熊02] 熊大鈞,曲面偏置方法應用於殘肢受壓區與非受壓區之形狀修改,國立成功大學機械工程系,碩士論文,2002。

    [蕭 06] 蕭世祥,擬靜態有限元素模型分析膝下殘肢與義肢承筒之介面壓力,國立成功大學機械工程系,碩士論文,2006。

    下載圖示 校內:2010-07-24公開
    校外:2012-07-24公開
    QR CODE