簡易檢索 / 詳目顯示

研究生: 高慶斌
Kao, Ching-Pin
論文名稱: 在非空間相似度量測法下之分群技術之研究
A Study on Clustering Techniques with Non-Spatial Similarity Measures
指導教授: 曾新穆
Tseng, Vincent Shin-Mu
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: 資料探勘分群驗證技術非空間量測法模糊分群限制性分群基因微陣列
外文關鍵詞: non-spatial measure, fuzzy clustering, data mining, clustering, validation technique, constrained clustering, microarray
相關次數: 點閱:143下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前雖然已有許多的分群方法被提出來,但它們普遍面臨一些問題:(1) 無法應用於使用非空間相似度量測法之資料、(2) 缺乏自動性、(3) 品質不佳、(4) 效率不佳、(5) 缺乏讓使用者自定條件之彈性。本論文提出了一些新穎的分群方法,可以處理各式各樣採用非空間相似度量測法之資料,特別是針對基因表現資料的分析。
    首先,我們提出了可分析各種資料的一個整合的分群方法,稱為Smart Cluster Affinity Search Technique (Smart-CAST),並將它應用在探勘多狀態的基因表現資料上。Smart-CAST整合了密度基礎分群法以及驗證技術,以達到群集分析的自動化與高正確性之需求。另外,我們提出了一個反覆的計算方式可以有效地減少分群所需執行次數,進而達到執行效率之提升。經由模擬的基因表現資料之實驗顯示,Smart-CAST比其他方法更具高效率、高分群品質與高度自動化。
    其次,我們提出了一個無參數、以相似度為基礎的高效率分群方法,稱為Correlation Search Technique (CST)。CST最獨特新穎的地方在於它將驗證技術合併整合於分群過程中,所以在執行過程中可以隨時保持高分群品質之結果。經由實際的及模擬的基因表現資料之實驗顯示,CST比其他方法更具高效率、高分群品質與高度自動化。經由實驗證實,CST 非常適用於分析基因表現資料。
    再者,我們提出了一個不需使用者輸入參數,且適用於分析使用非空間相似度量測法之資料的模糊分群方法,稱為Similarity-based Possibilistic C-Means (SPCM)。SPCM主要的概念在於整合及改良PCM與Mountain Method,使它可以符合以相似度為基礎之分群應用,SPCM的優點在於它可以自動產生分群結果而不需要使用者輸入任何參數。經由實際的及模擬的基因表現資料之實驗顯示,SPCM對於以相似度為基礎的分群分析,即使在雜訊很多的環境之下,仍具有高效率、高分群品質與高度自動化。
    最後,我們提出了一個改良的階層式分群方法,稱為Correlational Constrained Complete-Link (C-CCL)。C-CCL適用於當使用相關係數為相似度量測法,並擁有基因配對限制的監控資訊時,針對基因進行表現分析。C-CCL的輸入不止包含了基因的相似度矩陣,還包含了基因分群的配對限制。經由實際的基因表現資料之實驗顯示,C-CCL優於其他的方法。
    經由實驗證實,本研究所提出之方法確實能解決現存分群方法在處理非空間相似度量測法、自動性、品質、效率、讓使用者自定條件…等方面之問題。本研究所提出之方法未來將能廣泛運用在基因微陣列分析等高價值之應用上。

    Although a number of clustering methods have been studied in the rich literature, they incur problems in the following aspects: (1) Non-spatial similarity measures; (2) Automation; (3) Quality; (4) Efficiency; and (5) Flexibility. In this dissertation, we propose several novel methods to cluster various types of data with non-spatial similarity measures, especially for gene expression analysis.
    First, we proposed an integrated approach, called Smart Cluster Affinity Search Technique (Smart-CAST), for identifying and validating clusters in multivariate data sets and apply it to the mining of gene expressions in multi-condition experiments. Smart-CAST incorporates the density-based clustering method along with validation techniques to achieve automation and high accuracy in clustering. Furthermore, an iterative computing process is adopted to reduce the amount of computation required for clustering so as to meet the requirement of efficiency. Through experiments conducted on simulated gene expression data sets, the Smart-CAST is shown to deliver higher efficiency, clustering quality and automation than other methods.
    Second, we proposed a parameter-less, similarity-based and efficient clustering algorithm, called Correlation Search Technique (CST) that fits for analysis of gene expression data. The unique feature of CST is it incorporates the validation techniques into the clustering process so that high quality clustering results can be produced on the fly. Through experimental evaluation, the CST is shown to outperform other clustering methods greatly in terms of clustering quality, efficiency and automation on both of synthetic and real data sets.
    Moreover, we proposed a novel fuzzy clustering method, called Similarity-based Possibilistic c-Means (SPCM) that fits for clustering data with non-spatial similarity measures, without requesting users to specify the cluster number. The main idea behind the SPCM is to extend the PCM for similarity-based clustering applications by integration with the Mountain Method (MM). The SPCM has the merit that it can automatically generate clustering results without requesting users to specify the cluster number. Through performance evaluation on real and synthetic data sets, the SPCM method is shown to perform excellently for similarity-based clustering in clustering quality, even in a noisy environment with outliers.
    Finally, we proposed an improved hierarchical clustering method, called Correlational Constrained Complete-Link (C-CCL), for microarray or gene expression analysis in the presence of supervisory information, given as pairwise constraints, while using correlation coefficients as similarity measure. We are given not only a similarity matrix for the genes in the data set, but also a set of constraints given as pairwise cluster decision assertions. The performance evaluation shows that the C-CCL outperforms the other methods substantially in empirical studies.
    Through performance evaluation on various real and synthetic data sets, the proposed methods can resolve the main problems in existing clustering methods in terms like non-spatial similarity measures, automation, efficiency, etc. The rapid growth of various data mining applications justifies the timeliness and importance of our efforts in this research.

    中文摘要 ........................................................................................ I Abstract ........................................................................................ III 誌謝 ............................................................................................ V Table of Contents ............................................................................. VII List of Tables ................................................................................ X List of Figures ............................................................................... XI Chapter 1 Introduction ........................................................................ 1 1.1 Motivation ................................................................................. 1 1.2 Overview of the Dissertation ............................................................ 3 1.2.1 Similarity-based Clustering Methods Integrated with Validation Techniques .......... 3 1.2.2 Parameter-less and Similarity-based Clustering Methods ............................... 4 1.2.3 Similarity-based Fuzzy Clustering Methods ............................................. 5 1.2.4 Constrained Clustering Methods with the Correlation Coefficients ................... 6 1.3 Organization of the Dissertation ........................................................ 8 Chapter 2 Background and Related Works ..................................................... 9 2.1 Introduction ............................................................................... 9 2.2 Similarity Measures ....................................................................... 9 2.3 Hard Clustering Methods .................................................................. 11 2.4 Soft Clustering Methods .................................................................. 11 2.5 Validation Techniques ..................................................................... 13 2.5.1 Scalar Measures ......................................................................... 14 2.5.2 Intensity Image Methods ................................................................ 16 Chapter 3 A Similarity-based Clustering Method Integrated with Validation Techniques ... 18 3.1 Introduction ............................................................................... 18 3.2 Related Works ............................................................................. 19 3.3 Smart Cluster Affinity Search Technique (Smart-CAST) .................................. 20 3.3.1 Basic Principles ........................................................................ 21 3.3.2 Smart-CAST Method ....................................................................... 22 3.4 Experimental Evaluation ................................................................... 23 3.4.1 Simulated Dataset I and Dataset II .................................................. 25 3.4.2 Simulated Dataset III and Dataset IV ................................................ 28 3.5 Summary .................................................................................... 31 Chapter 4 A Parameter-less and Similarity-based Clustering Method ........................ 33 4.1 Introduction ............................................................................... 33 4.2 Correlation Search Technique (CST) ...................................................... 35 4.2.1 Preview of CST ......................................................................... 36 4.2.2 CST Algorithm ........................................................................... 39 4.3 Experimental Evaluation ................................................................... 42 4.3.1 Simulated Dataset I and Dataset II .................................................. 44 4.3.2 Simulated Dataset III and Dataset IV ................................................ 47 4.3.3 The Yeast Cell Cycle Dataset ......................................................... 50 4.4 Summary .................................................................................... 51 Chapter 5 A Similarity-based Fuzzy Clustering Method ...................................... 53 5.1 Introduction ............................................................................... 53 5.2 Related Works ............................................................................. 55 5.2.1 Mountain Method (MM) ................................................................... 55 5.2.2 Correlation Comparison Algorithm (CCA) ................................................ 56 5.3 Similarity-based Possibilistic C-Means (SPCM) ........................................... 57 5.3.1 The Re-defined Mountain Function in Mountain Method ................................ 58 5.3.2 The Re-defined Membership Update Equation in PCM ................................... 59 5.3.3 The Re-defined Center Update Equation in PCM ....................................... 60 5.3.4 The Re-defined Mountain-Elimination Function in Mountain Method .................... 61 5.3.5 The Termination Condition .............................................................. 62 5.4 Experimental Evaluation ................................................................... 62 5.4.1 Typical Data Sets ...................................................................... 65 5.4.2 Synthetic Data Sets .................................................................... 67 5.5 Summary .................................................................................... 70 Chapter 6 A Constrained Hierarchical Clustering Method with Correlation Coefficients ... 71 6.1 Introduction ............................................................................... 71 6.2 Correlational Constrained Complete-Link (C-CCL) ......................................... 73 6.2.1 Imitative Triangle Inequality with Respect to Correlation Coefficients ............ 73 6.2.2 C-CCL Algorithm ......................................................................... 76 6.3 Experimental Evaluation ................................................................... 79 6.3.1 The Yeast Sporulation Data Set ....................................................... 80 6.3.2 The Yeast Cell Cycle Data Sets ...................................................... 82 6.4 Summary .................................................................................... 84 Chapter 7 Conclusions and Future Works ..................................................... 85 References ...................................................................................... 88 Vita ............................................................................................ 95

    [1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications.” Proc. of the ACM SIGMOD International Conference on Management of Data, Seattle, Washington, 1998.
    [2] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Transactions on Medical Imaging, vol. 21, no. 3, pp. 193-199, 2002.
    [3] M. S. Aldenderfer and R. K. Blashfield, Cluster Analysis, Sage Publications, Beverly Hills, USA, 1984.
    [4] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine, “Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,” in Proceedings of National Academy of Science, Vol. 96, 1999, pp. 6745-6750.
    [5] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS: ordering points to identify the clustering structure.” Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadephia, Pennsylvania, USA, pp. 49-60, 1999.
    [6] S. Banerjee, D. P. Mukherjee, and D. D. Majumdar, “Fuzzy c-means approach to tissue classification in multimodal medical imaging,” Information Sciences, vol. 115, no. 1-4, April 1999, pp. 261-279, 1999.
    [7] S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised Clustering by Seeding.” Proc. of the Nineteenth International Conference on Machine Learning (ICML'02), pp. 19-26, 2002.
    [8] A. Ben-Dor and Z. Yakhini, “Clustering gene expression patterns,” Journal of Computational Biology, Vol. 6, 1999, pp. 281-297.
    [9] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    [10] J. C. Bezdek, J. Keller, R. Krishnapuram, and M. R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, Kluwer Academic Publishing, Norwell, MA, USA, 1999.
    [11] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. “Predicting gene regulatory elements in silico on a genomic scale,” Genome Research, vol. 8, pp. 1202-1215, 1998.
    [12] G. A. Carpenter and S. Grossberg, “A massive parallel architecture for a self-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.
    [13] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 866-883, 1996.
    [14] Z. Chi, H. Yan, T. Pahm, Fuzzy Algorithms: with Applications to Image Processing and Pattern Recognition, World Scientific Publishing, Singapore, 1996.
    [15] S. B. Cho and J. Ryu, “Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features.” Proc. of IEEE, vol. 90, no. 11, pp. 1744-1753, 2002.
    [16] S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P.O. Brown, and I. Herskowitz, “The transcriptional program of sporulation in budding yeast.” Science, vol. 282, no. 5393, pp. 699-705, 1998.
    [17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. MIT Press, Cambridge, MA, 1990.
    [18] R. N. Dave, “Robust fuzzy clustering algorithms,” Proceeding of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1281-1286, 1993.
    [19] R. N. Dave and R. Krishnapuram, “Robust Clustering Mehods: A Unified View,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 270-293, 1997.
    [20] R. N. Dave and S. Sen, “Robust fuzzy clustering of relational data,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 713-727, 2002.
    [21] J. W. Davenport and R. J. Hathaway, “Possibilistic c-Means Clustering for Relational Data,” Proceedings of the First International Conference on Neural, Parallel & Scientific Computations, vol. 1, pp. 139-142, 1995.
    [22] I. Davidson and S. S. Ravi, “Clustering With Constraints: Feasibility Issues and the k-Means Algorithm.” Proc. of SIAM International Conference on Data Mining (SDM'05), 2005.
    [23] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 224-227, 1979.
    [24] D. Dembele and P. Kastner, “Fuzzy c-means method for clustering microarray data,” Bioinformatics, vol. 19, pp. 973–980, 2003.
    [25] J. DeRisi, L. Penland, P. O. Brown, M. L. Bittner, P. S. Meltzer, M. Ray, Y. Chen, Y. A. Su, and J. M. Trent, “Use of a cDNA microarray to analyze gene expression patterns in human cancer.” Nature Genetics, vol. 14, pp. 457-460, 1996.
    [26] J. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of gene expression on a genomic scale.” Science, vol. 278, pp. 680-686, 1997.
    [27] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Clustering analysis and display of genome wide expression patterns,” Proceedings of the National Academy of Sciences, vol. 95, pp. 14863-14868, 1998.
    [28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise.” Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226-231, Portland, Orgon, 1996.
    [29] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering.” Machine Learning, vol. 2, pp. 139-172, 987.
    [30] S. P. A. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L. Adams, “Multiplexed biochemical assays with biological chips.” Nature, vol. 364, pp. 555-556, 1993.
    [31] A. D. Gordon, Classification, 2nd Edition. Monographs on Statistics and Ap-plied Probability 82, Chapman and Hall/CRC, NY, 1999.
    [32] K. C. Gowda and E. Diday, “Symbolic clustering using a new similarity measure,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 2. pp. 368-378, 1992.
    [33] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering algorithm for large databases,” Proc. of ACM-SIGMOD International Conference on Management of Data, pp. 73-84, 1998.
    [34] S. Guha, R. Rastogi, and K. Shim, “ROCK: a robust clustering algorithm for categorical attributes,” Proc. of the 15th International Conf. on Data Eng, pp. 512-521, 1999.
    [35] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On Clustering Validation Techniques,” Journal of Intelligent Information Systems, vol. 17, no 2-3, pp. 107-145, 2001.
    [36] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational duals of the c-Means clustering algorithms,” Pattern Recognition, vol. 22, no. 2, pp.205-212, 1989.
    [37] R. J. Hathaway and J. C. Bezdek, “NERF c-means: non-Euclidean relational fuzzy clustering,” Pattern Recognition, vol. 27, no. 3, pp.429-437, 1994.
    [38] R. J. Hathaway and J. C. Bezdek, “Visual cluster validity for prototype generator clustering models,” Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1563-1569, 2003.
    [39] A. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering in Multimedia Databases with Noise.” Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, New York, AAAI Press, 1998.
    [40] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, N.J, 1988.
    [41] G. Karypis, E. H. Han, and V. Kumar, “CHAMELEON: A hierarchical clustering algorithm using dynamic modeling,” IEEE Computer, vol. 32, no. 8, pp. 68-75, 1999.
    [42] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley, 1990.
    [43] M. K. Kerr and G. A. Churchill, “Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments,” Proc. Natl Acad. Sci. USA, vol. 98, no. 16, pp. 8961–8965, 2001.
    [44] S. Y. Kim, T. M. Choi, and J. S. Bae, “Fuzzy Types Clustering for Microarray Data,” International Journal of Computational Intelligence, vol. 2, no. 1, pp. 12-15, 2005.
    [45] D. Klein, S. Kamvar, and C. Manning, “From Instance-level Constraints to Space-level Constraints: Making the Most of Prior Knowledge in Data Clustering.” Proc. of the Nineteenth International Conference on Machine Learning, pp. 307-314, 2002.
    [46] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1479, 1990.
    [47] R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 98-110, May 1993.
    [48] R. Krishnapuram and J. M. Keller. “The Possibilistic c-Means Algorithm: insights and recommandations,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 385-393, 1996.
    [49] J. B. McQueen, “Some Methods for Classification and Analysis of Multivariate Observations.” Proc. of the Fifth Symposium on Mathematical, Statistics, and Probability, vol. 1, pp. 281-297, 1967.
    [50] R. T. Ng and J. Han, “Efficient and effective clustering methods for spatial data mining.” Proc. of the 20th VLDB Conference, pp. 144-155, Santiago, Chile, 1994.
    [51] D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities.” Pattern Recognition Letters, vol. 20, no.1, pp. 57-68, 1999.
    [52] C. J. Roberts, B. Nelson, M. J. Marton, R. Stoughton, M. R. Meyer, H. A. Bennett, Y. D. He, H. Dai, W. L. Walker, T. R. Hughes, M. Tyers, C. Boone, and S.H. Friend, “Signaling and circuitry of multiple map pathways revealed by matrix of global gene expression profiles.” Science, vol. 283, pp. 873-880, 2000.
    [53] F. J. Rohlf, “Classification of Aedes by numerical taxonomic methods (Diptera, Culicidae),” Ann Entomol Soc Amer, vol. 56, pp. 798-804, 1963.
    [54] D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” Cog. Sci., vol. 9, pp. 75-112, 1985.
    [55] M. Schena, D. Shalon, R. W. Davis and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, pp. 467-470, 1995.
    [56] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A multi-resolution clustering approach for very large spatial databases.” Proceedings of the 24 th Very Large Databases Conference (VLDB 98), pp. 428-439, New York, Aug. 1998.
    [57] H.-L. Shieh, Y.-K. Yang, and C.-N. Lee,. “A Robust Fuzzy Clustering Approach and Its Application to Principal Component Analysis,” Proceedings of the International Conference on Artificial Intelligence and Applications, pp. 251-256, 2005.
    [58] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Fucher, “Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
    [59] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, T. R. Golub, “Interpreting Patterns of Gene Expression with Self-organizing Maps: Methods and Application to Hematopoietic Differentiation,” Proceedings of the National Academy of Sciences, vol. 96, no. 6, pp. 2907-2912, 1999.
    [60] S. M. Tseng and L. J. Chen, “An Empirical Study of the Validity of Gene Expression Clustering,” Proc. of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS’02), 2002.
    [61] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints.” Proc. of the Seventeenth International Conference on Machine Learning (ICML 2000), pp. 1103-1110, 2000.
    [62] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-Means clustering with background knowledge.” Proc. of the Nineteenth International Conference on Machine Learning, pp. 577-584, 2001.
    [63] W. Wang, J. Yang, and R. Muntz, “STING: a statistical information grid approach to spatial data mining.” Proc. 23rd Int. Conf. on Very Large Data Bases (VLDB), pp. 186-195, 1997.
    [64] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi, “Neurobiology large-scale temporal gene expression mapping of central nervous system development.” Proc. Natl Acad. Sci. USA, vol. 95, pp. 334-339, 1998.
    [65] C. W. Wu, J. L. Chen, and J. H. Wang, “Self-organizing Mountain Method for clustering,” 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 2434-2438, 2002.
    [66] R. R. Yager and D. P. Filev, “Approximate clustering via the Mountain Method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 8, pp. 1279-1284, 1994.
    [67] M. S. Yang, “A Survey of Fuzzy Clustering,” Mathematical and Computer Modelling, vol. 18, pp. 1-16, 1993.
    [68] M. S. Yang and K. L. Wu, “A Similarity-Based Robust Clustering Method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 4, pp. 434-448, 2004.
    [69] K. Y. Yeung, D. R. Haynor and W. L. Ruzzo, “Validating Clustering for Gene Expression Data,” Bioinformatics, vol. 17, no. 4, pp. 309-318, 2001.
    [70] T. Zhang, R. Ramakrishnan and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proc. of the 1996 ACM SIGMOD International Conf. on Management of Data, pp. 103-114, 1996.
    [71] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: A new data clustering algorithm and its applications.” Data Mining and Knowledge Discovery, vol. 1, no. 2, pp. 141-182, 1997.

    下載圖示 校內:2007-08-25公開
    校外:2007-08-25公開
    QR CODE