簡易檢索 / 詳目顯示

研究生: 陳俊翰
Chen, Chun-Han
論文名稱: 添加稀釋物對甲烷/一氧化二氮反置擴散火焰之燃燒特性影響
Effects of Diluent Addition on Combustion Characteristics of Methane/Nitrous Oxide Inverse Diffusion Flame.
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 多噴口燃燒器反置擴散火焰富氧燃燒一氧化二氮NO形成污染物排放
外文關鍵詞: Multi-port burner, Inverse diffusion flame, Oxy-enriched combustion, Nitrous oxide, Pollutant emission
相關次數: 點閱:87下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用實驗及數值模擬來探討添加稀釋氣體於N2O/CH4反置擴散火焰(inverse diffusion flame, IDF)之燃燒特性影響,本研究的目的是為了了解添加不同稀釋氣體對CH4/N2O IDF燃燒特性的影響,因此將選擇三種不同的稀釋氣體,即He,CO2和Ar。
    實驗方面,藉由中心管通入一氧化二氮與不同的稀釋氣體(Ar、He、CO2)之混合氣,第二環為燃料甲烷,最外環為33% O2與67% N2之混合氣,來探討添加不同濃度的稀釋氣體及流速改變對火焰型態上的影響,並利用理論解模型預測火焰型態變化,進而得到反置擴散火焰的形成過程,最後利用廢氣量測,針對一些較為重要的污染物(O2、CO2、NOX、CO)進行討論。
    在了解完初步的添加稀釋氣體對燃燒特性的效應後,吾人將利用CHEMKIN PRO針對添加稀釋氣體對火焰結構(flame structure)、溫度、污染物排放及污染物生成機制進行較深入的探討,而本研究將把添加稀釋氣體對燃燒特性影響分為為三種效應來進行探討,分別為,稀釋效應(inert effect)、熱/擴散效應(thermal/diffusion effect)和化學效應(chemical effect)。
    初步實驗結果顯示,在火焰現象中,隨著不同濃度的稀釋氣體添加後,可以發現火焰存在著幾種不同的形態:標準擴散火焰、閉口反置擴散火焰、開口反置擴散火焰、跳脫火焰,在理論解預測結果中,反置擴散火焰的形成可以分成幾個階段: (1)先形成一標準擴散火焰,(2)內部火焰的富油、當量條件、貧油分支會依序出現,形成反置擴散火焰,(3)內部及外部火焰的富油、當量條件、貧油分支會依序形成包絡狀火焰,最後形成開口狀反置擴散火焰。
    在數值模擬的部分,thermal/diffusion effect主導著添加Ar條件之火焰溫度上升,而inert effect及chemical effect則是主導著添加Ar及CO2為稀釋氣體條件之火焰溫度下降,並且針對NO形成的五種機制: Thermal route、N2O-intermediate route、NNH-intermediate route、HNO-intermediate route、Prompt route進行探討,得到在添加不同濃度稀釋氣體情況下,主導NO形成的機制。

    The purpose of this study was to examine the combustion characteristics of CH4/N2O IDF with different dilution gases. In the experiment, a mixture of nitrous oxide and different dilution gases (Ar, He, CO2) was introduced through the central tube, the second port was introduced with methane fuel, and the outer port was introduced with a mixture of 33% O2 and 67% N2. After understanding the effect of the initial addition of dilution gas on the combustion characteristics, CHEMKIN PRO was used to conduct a more in-depth discussion on the flame structure, temperature, pollutant emission and pollutant generation mechanism for the addition of dilution gas. Preliminary experimental results showed that in the flame phenomenon, with the addition of different concentrations of dilution gas, it found that there are several different forms of flame: normal diffusion flame, closed-tip inverse diffusion flame, opened-tip inverse diffusion flame, liftoff flame. In the numerical simulation part, the thermal/diffusion effect dominates the rise of flame temperature with the addition of Ar conditions, while the inert effect and chemical effect dominate the flame temperature drop with the addition of Ar and CO2 as the diluent gas conditions.

    摘 要 I Abstract III 致 謝 VII 表目錄 X 圖目錄 XI 符號表 XIV 第一章 緒論 1 1-1 背景 1 1-2 擴散火焰 3 1-3 富氧燃燒 6 1-4 一氧化二氮火焰 7 1-5 添加稀釋氣體效應 8 1-6 污染物排放 9 1-7 動機 10 1-8 目的 11 第二章 實驗設備與研究方法 12 2-1 同軸三環燃燒器 12 2-2 廢氣量測 12 2-3 火焰型態預測 13 2-4 數值模擬方法 16 2-5 實驗條件 17 第三章 結果與討論-實驗 19 3-1 火焰型態 19 3-2 火焰型態預測 22 3-3 廢氣量測 24 第四章 結果與討論-數值模擬 26 4-1 添加稀釋氣體對火焰結構之影響 26 4-2 添加稀釋氣體對污染物排放之影響 28 4-3 NO形成之機制探討 31 第五章 結論 34 參考資料 37

    [1] Cai G, Sun W, Fang J, Li M, Cong Y, Yang Z. Design and performance characterization of a sub-Newton N2O monopropellant thruster. Aerospace Science and Technology. 2012;23:439-51.
    [2] Shan F, Hou L, Piao Y. Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations. Acta Astronautica. 2013;85:1-11.
    [3] Carmicino C, Scaramuzzino F, Sorge AR. Trade-off between paraffin-based and aluminium-loaded HTPB fuels to improve performance of hybrid rocket fed with N2O. Aerospace Science and Technology. 2014;37:81-92.
    [4] Burke S, Schumann T. Diffusion flames. Industrial & Engineering Chemistry. 1928;20:998-1004.
    [5] Roper F. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combustion and Flame. 1977;29:219-26.
    [6] Roper F, Smith C, Cunningham A. The prediction of laminar jet diffusion flame sizes: Part II. Experimental verification. Combustion and Flame. 1977;29:227-34.
    [7] Roper F. Laminar diffusion flame sizes for curved slot burners giving fan-shaped flames. Combustion and flame. 1978;31:251-8.
    [8] Chung S, Law C. Burke–Schumann flame with streamwise and preferential diffusion. Combustion Science and Technology. 1984;37:21-46.
    [9] Ishizuka S. An experimental study on the opening of laminar diffusion flame tips. Symposium (International) on Combustion: Elsevier; 1982. p. 319-26.
    [10] Ishizuka S, Sakai Y. Structure and tip-opening of laminar diffusion flames. Symposium (International) on Combustion: Elsevier; 1988. p. 1821-8.
    [11] Im H, Law C, Axelbaum R. Opening of the Burke-Schumann flame tip and the effects of curvature on diffusion flame extinction. Symposium (International) on Combustion: Elsevier; 1991. p. 551-8.
    [12] Mikofski MA, Williams TC, Shaddix CR, Blevins LG. Flame height measurement of laminar inverse diffusion flames. Combustion and Flame. 2006;146:63-72.
    [13] Sidebotham GW, Glassman I. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combustion and flame. 1992;90:269-83.
    [14] Kang K, Hwang J, Chung S, Lee W. Soot zone structure and sooting limit in diffusion flames: Comparison of counterflow and co-flow flames. Combustion and Flame. 1997;109:266-81.
    [15] Shaddix CR, Williams TC, Blevins LG, Schefer RW. Flame structure of steady and pulsed sooting inverse jet diffusion flames. Proceedings of the Combustion Institute. 2005;30:1501-8.
    [16] Mikofski MA, Williams TC, Shaddix CR, Fernandez-Pello AC, Blevins LG. Structure of laminar sooting inverse diffusion flames. Combustion and Flame. 2007;149:463-78.
    [17] Liu F, Smallwood G. Control of the structure and sooting characteristics of a coflow laminar methane/air diffusion flame using a central air jet: An experimental and numerical study. Proceedings of the Combustion Institute. 2011;33:1063-70.
    [18] Johnson MB, Sobiesiak A. Hysteresis of methane inverse diffusion flames with co-flowing air and combustion products. Proceedings of the Combustion Institute. 2011;33:1079-85.
    [19] Yamamoto K, Isobe Y, Hayashi N, Yamashita H, Chung SH. Behaviors of tribrachial edge flames and their interactions in a triple-port burner. Combustion and Flame. 2015;162:1653-9.
    [20] Wall TF. Combustion processes for carbon capture. Proceedings of the combustion institute. 2007;31:31-47.
    [21] De Leo M, Saveliev A, Kennedy LA, Zelepouga SA. OH and CH luminescence in opposed flow methane oxy-flames. Combustion and Flame. 2007;149:435-47.
    [22] Yepes HA, Amell AA. Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification. International Journal of Hydrogen Energy. 2013;38:7519-27.
    [23] Oh KC, Shin HD. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel. 2006;85:615-24.
    [24] Jung Y, Oh KC, Bae C, Shin HD. The effect of oxygen enrichment on incipient soot particles in inverse diffusion flames. Fuel. 2012;102:199-207.
    [25] Escudero F, Fuentes A, Demarco R, Consalvi J-L, Liu F, Elicer-Cortés J, et al. Effects of oxygen index on soot production and temperature in an ethylene inverse diffusion flame. Experimental Thermal and Fluid Science. 2016;73:101-8.
    [26] Cawthra JK, Eisenstadt M. Summary of Nitrous Oxide Investigations. AIR FORCE WEAPONS LAB KIRTLAND AFB NM; 1976.
    [27] Nitrous Oxide Safety. Space Propulsion Group; 2012.
    [28] Vanderhoff JA, Bunte SW, Kotlar AJ, Beyer RA. Temperature and concentration profiles in hydrogen-nitrous oxide flames. Combustion and flame. 1986;65:45-51.
    [29] Sausa R, Anderson W, Dayton D, Faust C, Howard S. Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame. Combustion and flame. 1993;94:407-25.
    [30] Powell O, Papas P, Dreyer C. Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames. Combustion Science and Technology. 2009;181:917-36.
    [31] Newman-Lehman T, Grana R, Seshadri K, Williams F. The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames. Proceedings of the Combustion Institute. 2013;34:2147-53.
    [32] Smith GP, Park C, Luque J. A note on chemiluminescence in low-pressure hydrogen and methane–nitrous oxide flames. Combustion and flame. 2005;140:385-9.
    [33] Liu F, Guo H, Smallwood GJ, Gülder ÖL. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NOx formation. Combustion and Flame. 2001;125:778-87.
    [34] Wang L, Liu Z, Chen S, Zheng C, Li J. Physical and chemical effects of CO2 and H2O additives on counterflow diffusion flame burning methane. Energy & fuels. 2013;27:7602-11.
    [35] Shih H-Y, Hsu J-R. Dilution effects analysis of opposed-jet H2/CO syngas diffusion flames. Combustion Theory and Modelling. 2013;17:543-62.
    [36] McLintock IS. The effect of various diluents on soot production in laminar ethylene diffusion flames. Combustion and Flame. 1968;12:217-25.
    [37] Kailasanathan RKA, Yelverton TL, Fang T, Roberts WL. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames. Combustion and Flame. 2013;160:656-70.
    [38] Xu H, Liu F, Sun S, Zhao Y, Meng S, Tang W. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combustion and Flame. 2017;177:67-78.
    [39] Sze L, Cheung C, Leung C. Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combustion and flame. 2006;144:237-48.
    [40] Choy Y, Zhen H, Leung C, Li H. Pollutant emission and noise radiation from open and impinging inverse diffusion flames. Applied energy. 2012;91:82-9.
    [41] Kotb A, Saad H. A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames. International Journal of Thermal Sciences. 2016;109:362-73.
    [42] Yamamoto K, Kato S, Isobe Y, Hayashi N, Yamashita H. Lifted flame structure of coannular jet flames in a triple port burner. Proceedings of the Combustion Institute. 2011;33:1195-201.
    [43] Miao J, Leung C, Cheung C, Huang Z, Zhen H. Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy. 2016;104:284-94.
    [44] Rørtveit GJ, Hustad JE, Li S-C, Williams FA. Effects of diluents on NOx formation in hydrogen counterflow flames. Combustion and Flame. 2002;130:48-61.
    [45] Ko Y-C, Hou S-S, Lin T-H. Laminar diffusion flames in a multiport burner. Combustion science and technology. 2005;177:1463-84.
    [46] 林顯宗. 添加強氧化劑對甲烷噴流擴散火焰燃燒特性之影響. 成功大學航空太空工程學系學位論文. 2013:1-75.
    [47] Park S, Kim Y. Effects of nitrogen dilution on the NOx formation characteristics of CH4/CO/H2 syngas counterflow non-premixed flames. International Journal of Hydrogen Energy. 2017;42:11945-61.

    下載圖示 校內:2020-09-04公開
    校外:2020-09-04公開
    QR CODE