簡易檢索 / 詳目顯示

研究生: 龎鈞翰
Pang, Chun-Han
論文名稱: 以硬模板法合成中孔洞氧化矽與金屬/氧化矽空心球及其應用
Synthesis and application of mesoporous silica and metal-silicate hollow spheres prepared using hard-templating method
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 中孔洞氧化矽空心球金屬氧化矽材料硬模板法水熱法
外文關鍵詞: Mesoporous Silica Hollow Sphere, Metal Silica Material, Hard-Templating Method, Hydrothermal Treatment
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以硬模板法合成中空結構氧化矽材料,具有容易控制反應組成與條件的優點;產物最終的型態,亦可藉由硬模板的更替、組合來調整。因此,本研究中使用PMMA球作為硬模板,再搭配如明膠、AEO、F-127、C16TAMB等無毒、高生物相容性的單一界面活性劑不同種類的界面活性劑,合成中孔洞氧化矽空心球材料(Mesoporous Silica Hollow Spheres;以下簡寫為:MSHS),與中孔洞浮石狀氧化矽材料。
    本研究中,更進一步地使用了上述方法合得的MSHS作為氧化矽前驅物,再搭配不同種類的金屬鹽類水溶液,經水熱反應後,製備出如manganese、iron、cobalt、nickel、copper和zinc silicate等,多種metal silicate中孔洞空心球材料(metal silicate-Mesoporous Hollow Sphere; 以下簡寫為: metal silicate-MHS)。所有反應條件皆在常溫、1大氣壓、pH值7.0-8.0下反應完成,反應後的廢水亦無檢測出殘留的金屬離子,相當的節省能源,且不需做額外的廢水處理。故,本研究合出的材料及研發出之製備方法相當得環境友善,此成果亦在作為合成催化劑、吸附劑等工業應用上有相當大的發展潛力。
    鋰離子電池(以下簡寫為:LIB)常因為充放電後產生的體積膨脹,而造成性能衰變。而本研究中,鐵-中孔洞氧化矽空心球材料(Iron silicate-Mesoporous Hollow Spheres;以下簡寫為: Iron silicate -MHS)內部的空腔結構,可緩衝此體積膨脹效應所引起的衰變。因此,亦嘗試將Iron silicate -MHS作為LIB的負極電極的活性物質材料,發現在充放電效能與循環壽命等電化學性質上,均有不錯的表現。

    The hard-templating method enables a good control of the reaction composition and condition when synthesizing silica materials with hollow interiors. Moreover, the morphology of the resulting product can be controlled by the particular hard template used. Herein, PMMA beads are used as sacrificial hard templates, together with different surfactants with nontoxicity and good biocompatibility, i.e., gelatin, CTAMB, F-127 and AEO, to synthesize mesoporous silica hollow spheres (MSHS) with different morphologies and pumice-like silicas. The MSHS are further used as a silica source to prepare various metal silicate mesoporous hollow spheres (metal silicate-MHS), including manganese-, iron-, cobalt-, nickel-, copper- and zinc-silicate. The synthesis process is achieved via the hydrothermal treatment of the metal salt solutions at pH 7 to 8, room temperature, and 1 atm. No residual metal ions are detected in the solutions after the reaction process. Thus, wastewater treatment is not required, and the energy cost is reduced. In general, the proposed synthesis method is eco-friendly and has significant potential for industrial applications, such as the synthesis of catalysts and absorbents.

    The properties of lithium ion batteries (LIBs) are often degraded by volume explosion following repeated charging and discharging. However, the voids in the hollow iron silicate-MHS structures synthesized in this study provide the potential to accommodate this explosion. Therefore, experiments are performed using iron silicate-MHS as the anode electrode of an LIB. The results show that the electrode has a good cyclic stability and charge-discharge performance, as well as tunable electrochemical properties.

    第一章 緒論………………………………………………………………………………-1 1.1中孔洞氧化矽材料……………………………………………………………………1 1.1.1中孔洞材料………………………………………………………………………--1 1.1.2 矽酸鹽的基本概念…………………………………………………………………3 1.1.3 TEOS的性質………………………………………………………………………-5 1.2 中孔洞氧化矽空心球材料簡介………………………………………………………7 1.2.1 中孔洞氧化矽空心球材料的發展與應用…………………………………………7 1.2.2 以硬模板法合成中孔洞氧化矽空心球材料………………………………………8 1.3 界面活性劑簡介………………………………………………………………………9 1.3.1界面活性劑基本性質 ………………………………………………………………9 1.3.2 界面活性劑的分類………………………………………………………………-10 1.3.3 界面活性劑的行為………………………………………………………………-11 1.3.4 明膠(gelatin)、AEO的簡介………………………………………………………13 1.4 金屬-氧化矽材料(球)的簡介、製成介紹…………………………………………15 第二章. 實驗部份………………………………………………………………………-18 2.1 化學藥品……………………………………………………………………………-18 2.2 實驗方法……………………………………………………………………………-20 2.2.A中孔洞氧化矽空心球(MSHS)、浮石狀中孔洞氧化矽的合成方法………………20 2.2.A.a 使用矽酸鈉作為氧化矽源……………………………………………………-20 2.2.A.b 以TEOS作為氧化矽源…………………………………………………………21 2.2.B 以異相成核法,合成中空球形的Metal-silicate的合成方法……………………22 2.3 產物的鑑定…………………………………………………………………………-23 2.3.1穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) …………………23 2.3.2掃描式電子顯微鏡(Scanning Electron Microscopy;SEM) ………………………23 2.3.3 X-射線粉末繞射光譜(Powder X-Ray Diffraction;XRD) ………………………24 2.3.4 全反射紅外光譜法(Attenuated Total Reflectance;ATR)………………………24 2.3.5氮氣等溫吸附-脫附測量(N2 adsorption/desorption isotherm) …………………24 第三章 以PMMA作為硬模板,合成中孔洞氧化矽材料的結果………………………28 3.1 研究動機……………………………………………………………………………28 3.2使用不同的表面活化劑……………………………………………………………28 3.2.1 以gelatin作為表面活化劑………………………………………………………28 3.2.2 以AEO作為表面活化劑…………………………………………………………29 3.2.3以Pluronic® F-127作為表面活化劑……………………………………………32 3.2.4以C16TAMB作為表面活化劑……………………………………………………34 3.3 使用氮氣吸附脫附儀,分析以不同的表面活化劑、界面活性劑,所製備出的氧化矽材料表面積及孔洞性質………………………………………………………………-36 3.3.1 以氮氣吸脫附儀,分析使用gelatin、AEO-67作為表面活化劑,所製備之構形完整的MSHS之表面積、孔洞性質………………………………………………………36 3.3.2 以氮氣吸脫附儀,分析使用Pluronic® F-127作為表面活化劑,所製備產物的表面積、孔洞性質…………………………………………………………………………37 3.3.3 以氮氣吸脫附儀,分析使用C16TAMB作為表面活化劑,所製備產物的表面積、孔洞性質…………………………………………………………………………………39 第四章 以異相成核法製備metal silicate-MHS的結果………………………………41 4.1 研究動機……………………………………………………………………………41 4.2 合成Copper silicate-MHS…………………………………………………………-42 4.2.1 使用不同的鹼源合成Copper silicate-MHS……………………………………-42 4.2.1.1 pH值緩衝液系統,對Copper silicate-MHS異相成核的影響…………………44 4.2.2 使用單次異相成核反應,製備不同金屬-氧化矽莫耳比的Copper silicate-MHS………………………………………………………………………………45 4.2.2.1 製備Copper silicate-MHS的反應機構探討…………………………………-46 4.2.3 使用多次異相成核反應,製備高金屬-氧化矽莫耳比的Copper silicate-MHS-47 4.2.4 以ATR-IR、XRD分析產物………………………………………………………50 4.2.5分析產物的孔洞性質與表面積…………………………………………………-53 4.3 合成Nickel silicate-MHS……………………………………………………………56 4.3.1 使用單次異相成核反應,製備不同金屬-氧化矽莫耳比的Nickel silicate-MHS………………………………………………………………………………56 4.3.2使用多次異相成核反應,製備高金屬-氧化矽莫耳比的Nickel silicate-MHS…58 4.3.3 以ATR-IR、XRD分析產物………………………………………………………59 4.3.4分析產物的孔洞性質與表面積…………………………………………………-61 4.4合成Iron silicate-MHS………………………………………………………………62 4.4.1 使用不同的鹼源合成Iron silicate-MHS…………………………………………62 4.4.2 使用單次異相成核反應,製備不同鐵-氧化矽莫耳比的Iron silicate-MHS……64 4.4.3 使用多次異相成核反應,製備高鐵-氧化矽莫耳比的Iron silicate-MHS………65 4.4.4 以ATR-IR、XRD分析產物………………………………………………………66 4.4.5異相成核反應,製備Iron silicate-MHS的反應機構……………………………69 4.4.6 分析產物的孔洞性質與表面積…………………………………………………-70 4.5 推導以異相成核法製備metal silicate-MHS的反應機構…………………………-72 4.6 將單次與多次異相成核法應用於合成其他種金屬的metal silicate-MSHS……--74 4.6.1 製備Manganese silicate-MHS…………………………………………………--74 4.6.2 製備Cobalt silicate-MHS…………………………………………………………78 4.6.3 製備Zinc silicate-MHS…………………………………………………………--85 第五章 以鐵-中孔洞氧化矽空心球(Iron silicate-MHS),作為鋰離子電池的負極材料…………………………………………………………………………………………-89 5.1 研究動機……………………………………………………………………………-89 5.2 電極製作配方與實驗方法…………………………………………………………-90 5.2.1實驗藥品與材料…………………………………………………………………-90 5.2.2 正極極片之製作…………………………………………………………………-90 5.2.3 鈕扣型電池組裝…………………………………………………………………-91 5.2.4 電池循環壽命測試(Cycle life Test) ……………………………………………-91 5.2.5 循環伏安法( Cyclic Voltammetry) ………………………………………………92 5.3 電池效能測試………………………………………………………………………-92 第六章 結論………………………………………………………………………………94 參考文獻…………………………………………………………………………………-96

    (1) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710-712 , 1992
    (2) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834-10843, 1992
    (3) V. Meynen, P. Cool and E. F. Vansant, Microporous and Mesoporous Materials, 125, 170-223, 2009
    (4) F. Tang, L. Li and D. Chen, Advanced Materials, 24, 1504-1534, 2012
    (5) C. Fox, Cosmet Toiletries, 99, 28-31, 1984
    (6) J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 42, 3146-3150, 2003
    (7) A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 15, 1385-1393 , 2003
    (8) H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 49, 899-906, 2002
    (9) V. Alfredsson and M. W. Anderson, Chem Mater, 8, 1141-1146 , 1996
    (10) H. P. Lin and C. Y. Mou, Accounts Chem Res, 35, 927-935 , 2002
    (11) J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 106, 2552-2558, 2002
    (12) A. Bhaumik and S. Inagaki, J Am Chem Soc, 123, 691-696, 2001
    (13) Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 40, 1258 , 2001
    (14) J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 219, U837-U837 , 2000
    (15) Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 42, 414, 2003
    (16) F. Noll, M. Sumper and N. Hampp, Nano Lett, 2, 91-95, 2002
    (17) Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 12, 206, 2000
    (18) P. Jiang, J. F. Bertone and V. L. Colvin, Science, 291, 453-457, 2001
    (19) C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2028-2029, 2001
    (20) Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 9, 14, 1997
    (21) Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 398, 223-226 , 1999
    (22) C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 13, 649-652, 2001
    (23) C.-G. Wu and T. Bein, Chemistry of materials, 6, 1109-1112, 1994
    (24) Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 12, 6202-6210, 1996
    (25) C. HyunáKo, Chemical Communications, 2467-2468, 1996
    (26) A. Sayari, Chemistry of Materials, 8, 1840-1852, 1996
    (27) M. Hartmann, A. Pöppl and L. Kevan, The Journal of Physical Chemistry, 100, 9906-9910, 1996
    (28) S. Narayanan, K. Deshpande and B. P. Prasad, Journal of molecular catalysis, 88, L271-L276 , 1994
    (29) R. Schrieber and H. Gareis, in Gelatine Handbook, Wiley-VCH Verlag GmbH & Co. KGaA,1-44, 2007
    (30) R. K. Iler, The Chemistry of Silica John Wiley, New York, 1979.
    (31) C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 70, 301-322, 1985
    (32) E. Bäuerlein, Biomineralization, 2006
    (33) The Chinese Chem. Soc., Taipei, Chemistry, 62, 273, 2004
    (34) H. Chun Zeng, Current Nanoscience, 3, 177-181, 2007
    (35) J. Jang, Cashew Nut Shell Liquid: A Goldfield for Functional Materials, Springer Berlin / Heidelberg, 189-260, 2006
    (36) Y. R. Ma and L. M. Qi, J. Colloid Interface Sci., 335, 1-10 , 2009
    (37) W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci, 26, 62., 1968
    (38) B. Liu, D. Jia, J. Rao, Q. Meng and Y. Shao, Bulletin of Materials Science, 31, 771-774, 2008
    (39) T.-S. Deng and F. Marlow, Chemistry of Materials, 24, 536-542, 2012
    (40) F. Caruso, R. A. Caruso and H. Möhwald, Science, 282, 1111-1114, 1998
    (41) X. Xu and S. A. Asher, Journal of the American Chemical Society, 126, 7940-7945, 2004
    (42) G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao and C. Xie, Advanced Materials, 19, 2370-2374, 2007
    (43) J. Iraelachvili, S. Marcelja and R. Horn, Q Rev Biophys, 13, 121-200, 1980
    (44) S. Consola, M. Blanzat, E. Perez, J. C. Garrigues, P. Bordat and I. Rico‐Lattes, Chemistry-A European Journal, 13, 3039-3047, 2007
    (45) Nico M. van Os, Nonionic Surfactants: Organic Chemistry, 1997
    (46) R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 31, 485-493, 1998
    (47) A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 36, 1001-1003, 1997
    (48) R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 36, 477-479, 1997
    (49) M. G. Clerici, G. Bellussi and U. Romano, J Catal, 129, 159-167, 1991
    (50) C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 206, 57 , 1993
    (51) J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 25, 43-57, 1998
    (52) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710-712 , 1992
    (53) A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 148, 569-574, 1994
    (54) M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 100, 2178-2182, 1996
    (55) R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 37, 113-120, 1996
    (56) B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 13, 552-557 , 2001
    (57) D. R. Rolison, Science, 299, 1698-1701, 2003
    (58) F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 113, 562-574 , 2008
    (59) M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 131, 18112-18118, 2009
    (60) M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 115, 301-309, 1989
    (61) R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 106, 13287-13293 , 2002
    (62) Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 23, 95-103, 2004
    (63) H. P. Beohm, Adv. Catal., 16, 226, 1966
    (64) R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    (65) Chia-Sheng Chang and Hong-Ping Lin, Synthesis of Mesoporous Silica Hollow Synthesis of Mesoporous Silica Sphere by Hard -Templating Technology for Application in Liquid Crystal Templating Technology for Application in Liquid Crystal Displayer, Department of Chemistry, National Cheng Kung University, 2013 (66) Shao-Nai Lin and Hong-Ping Lin, Using Surface-Activation Methods to Prepare Hollow Silica Sphere and Core-Shell Nanoparticles, Department of Chemistry, National Cheng Kung University, 2015
    (67) B. D. Andersona, and J. B. Tracy, Nanoscale, 6, 12195-12216, 2014
    (68) A. Paul Alivisatos, Science, 304, 711-714, 2004
    (69)「University of Florida, Department of Soil and Water Sciences Department」網站: soils.ifas.ufl.edu
    (70) 「Western Oregon University」網站: www.wou.edu
    (71) M. Boubatra, A. Azizi, G. Schmerber et al., Ionics, 18, 425, 2012
    (72) 「ResearchGate」網站: www.researchgate.net
    (73)「UMass Amherst,College of Engineering」網站: engineering.umass.edu
    (74) X. Wei, C. Tang, and X. Wang, ACS Appl. Mater. Interfaces, 7, 26572−26578, 2015
    (75) S.-H. Yu, B. Quan, A. Jin, and K.-S. Lee, ACS Appl. Mater. Interfaces, 7, 25725–25732, 2015
    (76) Yan-Wen Chen and Hong-Ping Lin, Synthesis and application of copper-silicate mesoporous material, Department of Chemistry, National Cheng Kung University, 2011
    (77) Yun-Ying Chen and Hong-Ping Lin, Synthesis and Application of Porous Metal-Silicates, Department of Chemistry, National Cheng Kung University, 2014
    (78) K. K. P. Mitchell, A. Liberman, A. C. Kummel, and W. C. Trogler, J. Am. Chem. Soc., 134, 13997−14003, 2012
    (79) Z. Niu, S. Zhang, Y. Sun, S. Gai, F. He, Y. Dai, L. Li, and P. Yang, Dalton Trans., 43, 16911-16918, 2014
    (80) D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman, 2010
    (81) 「IUPAC」官方網站: old.iupac.org
    (82) 「Center for Educational Technologies」官方網站: www.cet.edu
    (83) L. Wu et al., Electrochimica Acta, 190, 628–635, 2016
    (84) D. T. Nguyen, C. C. Nguyen, J.-S. Kim, J. Y. Kim, and S.-W. Song, ACS Appl. Mater. Interfaces, 5, 11234–11239, 2013
    (85) J. Alper, Science, 296, 1224-1226, 2002
    (86) H. Qin, N. Shaji, N. E. Merrill, H. S. Kim, R. C. Toonen, R. H. Blick, M. M. Roberts, D. E. Savage, M. G. Lagally and G. Celler, New J Phys, 7, 241 , 2005
    (87) M. R. Yu, Y. Huang, J. Ballweg, H. Shin, M. H. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick and J. C. Williams, Acs Nano, 5, 2447-2457 , 2011

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE