| 研究生: |
鐘聖凱 Chung, Sheng-Kai |
|---|---|
| 論文名稱: |
交流電動力操控下的環狀指叉型電極晶片
應用於養殖水體細菌數快速檢測之研究 Study on a Ring-shaped Interdigitated Electrode Controlled by AC Electrokinetic to Apply on Aquaculture for Rapid Bacteria Number Counting |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 水體中含菌量 、介電泳力 、交流電滲流 |
| 外文關鍵詞: | Instant concentration of bacteria in water, dielectrophoretic force, AC electroosmotic (ACEO) flow |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,石斑魚從幼魚長大為成魚時,主要會遭遇到三種細菌病毒的侵害,分別為神經壞死病毒、虹彩病毒、弧菌,根據相關研究及報導,神經壞死病毒及虹彩病毒已有相關的疫苗,甚至已發展出微流體晶片,從魚苗時期便可以篩選出魚病原因,唯獨具時效性的弧菌檢測仍缺乏相關檢測的裝置。密集的養殖環境與大量投與餌料所剩下的殘餘,以及環境氣候的急遽變化等,在在加深這些不穩定因子而致病。一般當水池中總生菌數超過1x 105 CFU/mL時,會使石斑魚生病、死亡,而造成整體養殖產業的損失,於是開發一套能即時檢測水中菌量的裝置是必須的。應用微機電製程技術製作微晶片,設計出以微流體力學為基礎之圓狀指叉形的微小電極濃縮器(RIDE)之檢驗平台,當施加特定電壓與頻率之交流訊號於電極上,無須外加微注射器等相關設備,即可產生連續流動傳輸至有介電層修飾的RIDE中間的弱電場區而濃縮,進而再被交流電滲透流力帶動粒子往該圓形電極中心聚集而影像數位化,以利繼之導入ImageJ生物影像軟體來定量檢測分析。本研究將樣本應用範圍從實驗室自行配製的菌液階段,推向實際應用在養殖水質中含菌數檢驗,迄今的結果顯示已能在10分鐘內達可定量之效果。此外我們更分別從前處理、晶片設計、實驗手法、後續影像等四方面來改善本定量分析,從實驗結果已探討出,若含試樣體積在100 L與含菌量在1x104到5x105 CFU/mL之間與傳統培養法具線性正相關,顯示此系統已能適合應用在養殖漁業水質的總生菌數之檢測上,且檢測全程時間已可縮短至20分鐘,其在誤差10倍內的標準下達到83.33%的準確率。藉由此技術的發展,除養殖漁業外,將更可應用到如醫學上的菌尿症、發酵工業、乳酸菌食品工業等等,對即時態溶液中細菌濃度的掌控有急迫需求之各種相關產業上。
Generally, during the growth process of groupers, there are mainly three causative factors, including nervous necrosis virus, grouper iridovirus, Vibrio. According to reports and papers, nervous necrosis virus and grouper iridovirus can be detected with kits even micro-fluidic chips as fish fry timing. Despite this, it lacks relative devices to detect amount of Vibrio in pool. With compressed farming environment, remaining bait due to a large number of feeding, climate change, these unstable causative factors make groupers sick as amount of them reach certain value. Normally, as total bacterial concentration reaches 1x105 CFU/mL in pool, it makes groupers sick and dead, and leads to loss of aquaculture fisheries. As a result, to develop a device that can detect instant concentration of bacteria in pool is necessary. Based on electrodynamics, a micro-concentrator platform with Ring-shaped Interdigitated Electrode (RIDE) was designed, combined with micro electro mechanical systems (MEMS). Applying a certain AC voltage and frequency, without extra pumps, it can attract particles on insulating layer-modified RIDE which is lower electrical field. Then, AC electroosmotic (ACEO) transports particles to center of RIDE to be captured as images. Finally, bio-imaging software ImageJ is applied to analyze and quantify. In this research, the applied range of RIDE system improves from lab-made sample to real sample in the pool. From past result, it shows quantification of concentration in 10 min is achievable. Otherwise, pretreatment, chip design, experimental methods, image-analyzing are improved to increase accuracy. From result, with 100 L volume sample, RIDE system can detect concentration from 1x104 to 5x105 CFU/mL and the detecting time is shortened to be 20 min. Accuracy of the range can reach 83.33% under 10 times error. By developing this technology, not only aquaculture fisheries, it also can be applied to fields which have requirement in detecting instant concentration, such as bacteriuria, fermentation industry and food industry.
Alshareef, M., Metrakos, N., Juarez Perez, E., Azer, F., Yang, F., Yang, X., & Wang, G. (2013). Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics, 7(1), 11803.
Bajwa, A., Tan, S. T., Mehta, R., & Bahreyni, B. (2013). Rapid detection of viable microorganisms based on a plate count technique using arrayed microelectrodes. Sensors (Basel), 13(7), 8188-8198.
Bernini, R., De Nuccio, E., Brescia, F., Minardo, A., Zeni, L., Sarro, P. M., . . . Scarfi, M. R. (2006). Development and characterization of an integrated silicon micro flow cytometer. Analytical and Bioanalytical Chemistry, 386(5), 1267-1272.
H. Morgan and N. G. Green ed. (2003). <AC Electrokinetics colloids and nanoparticles> chapter 8, 139-163.
Hong, F. J., Cao, J., & Cheng, P. (2011). A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. International Communications in Heat and Mass Transfer, 38(3), 275-279.
Inatomi, K. I., Izuo, S. I., & Lee, S. S. (2006). Application of a microfluidic device for counting of bacteria. Letters in Applied Microbiology, 43(3), 296-300.
Jen, C.-P., Chang, H.-H., Huang, C.-T., & Chen, K.-H. (2012). A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsystem Technologies, 18(11), 1887-1896.
Junya Suehiro†, R. Y., Ryo Hamada† and, & Hara, M. (1999). Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. Applied Physics, 32 ,2814–2820.
Kikutani, T., Tamura, F., Takahashi, Y., Konishi, K., & Hamada, R. (2012). A novel rapid oral bacteria detection apparatus for effective oral care to prevent pneumonia. Gerodontology, 29(2), e560-565.
Mandy, F. F., Bergeron, M., & Minkus, T. (1995). <Principles of Flow Cytometry.pdf>.
Mpholo, M., Smith, C. G., & Brown, A. B. D. (2003). Low voltage plug flow pumping using anisotropic electrode arrays. Sensors and Actuators B: Chemical, 92(3), 262-268.
N. G. Green, A. R., A. Gonza´lez, H. Morgan, and A. Castellanos. (2000). Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Physical Review E, 61(1), 4011-4018.
Park, S., Zhang, Y., Wang, T. H., & Yang, S. (2011). Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip, 11(17), 2893-2900.
Sakamoto, C., Yamaguchi, N., Yamada, M., Nagase, H., Seki, M., & Nasu, M. (2007). Rapid quantification of bacterial cells in potable water using a simplified microfluidic device. Journal of Microbiological Methods, 68(3), 643-647.
Shim, S., Stemke-Hale, K., Tsimberidou, A. M., Noshari, J., Anderson, T. E., & Gascoyne, P. R. (2013). Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics, 7(1), 011807.
Wang, J.-H. (2013). Master thesis of BME, NCKU, "Study on a Ring-shaped Interdigitated Electrode Controlled by AC Electrokinetic for Concentrating Bio-particles".
Wang, Z., Han, T., Jeon, T.-J., Park, S., & Kim, S. M. (2013). Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device. Sensors and Actuators B: Chemical, 178, 683-688.
Wu, Y., Xue, P., Kang, Y., & Hui, K. M. (2013). Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Analytical Chemistry, 85(18), 8661-8668.
Yang, L. (2012). A Review of Multifunctions of Dielectrophoresis in Biosensors and Biochips for Bacteria Detection. Analytical Letters, 45(2-3), 187-201.
Zhang, C., Khoshmanesh, K., Mitchell, A., & Kalantar-Zadeh, K. (2010). Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396(1), 401-420.
校內:2019-08-25公開