| 研究生: |
鄭智允 Cheng, Chih-Yun |
|---|---|
| 論文名稱: |
硫酸鈣/磷酸鈣複合骨泥之微結構及性質探討 Investigation of microstructure and properties of calcium sulfate/calcium phosphate composite cement |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 硫酸鈣 、磷酸鈣 、骨取代物 |
| 外文關鍵詞: | calcium sulfate cement, calcium phosphate cement |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
約在十九世紀末,硫酸鈣就已經應用在醫療做為填補骨缺陷用途,由於硫酸鈣在人體內具有良好的生物相容性、不易引起併發症等優點,所以硫酸鈣被大量應用於骨取代物,不過與鈣磷系鈣基骨泥相比,硫酸鈣鈣基骨泥在生物體內的生物降解性太快,植入人體後太快被吸收。相較於先前學長的硫酸鈣混合磷酸鈣粉體的鈣基骨泥研究,本實驗以H粉為原料,混合P粉溶液,合成出含有氫氧基磷灰石(hydroxyapatite)的硫酸鈣/磷酸鈣複合骨泥粉體,控制四種合成時間(t1、t2、t3、t4)以獲得不同含量的硫酸鈣/磷酸鈣複合物,期望藉由降解速度慢的氫氧基磷灰石減緩整體骨取代物在生物體內的降解速度,進而製造出降解速度緩慢又有良好操作性質、崩解性質、注射性質的硫酸鈣複合磷酸鈣鈣基骨泥。
本實驗以抗壓強度、重量損失、孔隙率、pH值、鈣基骨泥的工作時間及硬化時間、注射性、崩解性、SEM試片表面分析及XRD成分分析來測試各項合成時間的性質,以找出最適合的骨取代物參數。
Summary
In nineteenth century, the calcium sulfate had been used in medical application to fill bone defect. Calcium sulfate has good biocompatibility in human body. When it is implanted in the human body , there will be not the phenomenon of hypercalcemia syndrome, complications, and even without any infection. But the drawback is that calcium sulfate degrades rapidly in vivo , in other words , it will soon be absorbed rapidly. In this study, calcium sulfate dehydrate will be mixed with diammonium hydrogen phosphate solution synthesize HA powder. Control the synthesis time, in order to get the different proportion powder with calcium sulfate and calcium phosphate. Expect by mixing the calcium phosphate powder to reduce the degradation rate. And then we can fabricate a calcium sulfate bone cement that has appropriate degradation rate, handleability, and injectability.
Key words: calcium sulfate cement, calcium phosphate cement
Introduction
In early stage, the bone defect was filled by autogenous bone graft or allografts. Most of the autogenous bone graft was got from iliac or ribs, but the disadvantage is that it will increase the risk of the surgery. Alloplasty do not have this problem ,so it is the tendency in the future.
Calcium phosphate and calcium sulfate are two typical such bioresorbable materials, calcium sulfate has become one of the most promising bone substitute materials today, because it has many advantage ,such as bioresorbable, , osteoconductivity and biocompatibility. But the disvantage of the calcium sulfate is that it has high rates of dissolution. High dissolution rate may not allow new bone cells to effectively grow into a bone cavity, so in this study will devote to investigate whether a calcium phosphate/calcium sulfate composite will lower the dissolution rate or not.
Materials and Methods
• The powders were made from the materials and chemicals listed in Table 3-1-1-1. And then use the powder to test compressive strength , weight loss , porosity , pH , working time , setting time , injectability , disintegrating , SEM and XRD to find an suitable synthesis arameter.
Result and Discussion
All powders with different soaking time have the good injectability. In weight loss test, the samples with pressure of 0.7Mpa have higher compressive strength then pressureless samples. The high concentration of setting solution (C2M) also has higher compressive strength then low concentration of setting solution (C1M) . In porosity test, no mater the different concentration setting solution, the porosity will not change, it will maintain 50%~60%. The pH value will increase with increasing immersing time. Compare the XRD analysis, the powder with longer soaking time has a higher intensity of calcium phosphate and lower intensity of calcium sulfate than the powder with shorter soaking time. Compare the SEM analysis, the powder with longer soaking time has more calcium phosphate granue than the powder with shorter soaking time. And the surface of ocylindrical will be smooth when adding the high concentration of setting solution (C2M).
Conclusion
(1) Compare the compressive strength and weight loss, when the concentration of setting liquid is C2M and the soaking time is t2, it will has the highest compressive strength and the lowest weight loss in day 14.
(2) The working time, pH value, injectability and dispersion do not have obviously different with different concentration setting liquid and different soaking time.
參考文獻
Amathieu L. and R. Boistelle, "Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, " Journal of Crystal Growth 88: pp.184,1988.
Amathieu L. Boiste R.: lle, J. Crystal Growth 79: pp.169, 1986.
Breed AL. "Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement." Traumatic hypertension of bone. Clin Orthop 102: pp.227-44, 1974.
Brown WE, Chow LC. "A new calcium phosphate water-setting cement. " In: Brown PW, editor. Cements research progress 1986. Westerville, OH: Am Ceram Soc;. pp.352–379. 1987
Buchardt H “"The biology of bone graft repair. " Clinical Orthop 174: pp.28-42, 1983.
Chunjuan Gao, Jianping Gao, Xiudong You, Shujuan Huo, Xiulan Li, Yang Zhang, Wenhai Zhang. "Fabrication of calcium sulfate/PLLA composite for boneRepair. " J Biomed Mater Res 73(A): pp.244–253, 2005.
Combe E.C. Smith D.C., Appl J. Chem. 14: pp.544, 1964.
Combe E.C. Smith D.C., Appl J. Chem. 15: pp.367, 1965.
Combe E.C. Smith D.C., Appl J. Chem. 16: pp.73, 1966.
Carlson J. Nilsson M. Fernandez E. Planell J.A. "An ultrasonic pulse-echo technique for monitoring the setting of CaSO4-based bone cement." Biomaterials, pp.71–77,2002
Carlson J. Nilsson M. Fernandez E. Planell J.A. " Monitoring the Setting of Injectable Calcium-BasedBone Cements Using Pulse-Echo Ultrasound." Biomaterials, pp.13,2004
Elisabeth Badens, Stephane Veesler, Roland Boistelle. "Crystallization of gypsum from hemihydrate in presence of additives." Journal of Crystal Growth88, pp. 704-709,1999
EL-SHALL H., RASHAD M.M. ABDEL-AAL E.A. "Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium." Cryst. Res. Technol. 37(12): pp.1264–1273, 2002.
Henman P, Finlayson D. Ordering allograft by weight: "Suggestions for the efficient use of frozen bone-graft for impaction grafting. " J Arthroplasty. 15: pp.368-371, 2000.
Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc 74: pp.1487-1510, 1991.
Hulbert SF, Hench LL, Forbers D, Bowman LS. "History of bioceramics. " Ceram Internat 8: pp.131-140, 1982.
Hu RW, Bohlman HH. "Fracture at the iliac bone graft harvest site after fusion of the spine. " Clin Orthop. 309: pp.208-213, 1994.
Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater.; 4: pp.85-107, 1989.
Jarcho M. "Calcium phosphate ceramics as hard tissue." Clin. Orthop. Rel. Res. 157: pp.259-279, 1981.
Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: pp.965-973, 1991.
Kuznetsova L.F. and O.I. Lomovskii, "Thermal Breakdown of Gypsum Crystals." Inorganic Materials 21: pp.1534-1536, 1985.
Katthagen B.D. "Bone regeneration with bone substitutes", Springer-Verlag, Berlin, pp.1987.
Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, pp.6085~6090, 1994.
McConnell J.D.C. Astill D.M. and Hall P.L. "The Pressure Dependence of the Dehydration of Gypsum to Bassanite. Mineralogical Magazine." 51: pp.453-457, 1987.
Mongiorgi R and Krajewski A. "Mineralogical alterations in osteoporotic bone tissue structure." Biomaterials. 2: pp.147-151, 1981.
Nussbaum DA, Gailloud P, Murphy K. "The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol 15: pp.121–126, 2004.
Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: pp.600–607, 2002.
Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: pp.399-404, 2003.
P. Vincenzini, "Ceramics in sub-stitutive and reconstructive surgery." Elsevier Science Publishers B.V, 1991.
Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park JB. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
Pierson AP, Bigelow D & Hamonic M Bone grafting with boplant. Results in thirty-three cases. J Bone & Joint Surg 50(B): pp.364–368, 1968.
Peltier L.F. and Jones R.H. "Treatment of unicameral bone cysts by curettage and packing with plaster of Paris." J.Bone Jt. Surg, vol 60, pp.820~822, 1978.
Peltier L.F. "The use of plaster of Paris to fill defects in bone." Clin. Orthop. Vol21, pp.1~29, 1961.
Ralph W.G. Wyckoff. Crystal Structures 504-507, 643-644, 1981.R. A. KUNTZE. Nature (London) 211: pp.406, 1966.
Rateitschak KH, Wolf HF. "Color Atlas of Dental Medicine. Thieme Medical Publishers." 1995.
Rashad M.M. Baioumy H.M. and Abdel-Aal E. A. "Structural and spectral studies on gypsum crystals under simulated conditions of phosphoric acid production with and without organic and inorganic additives Cryst." Res. Technol. 38(6): pp.433 – 439, 2003.
Roy D.M. Linnehan S.K., "Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. " Nature 247: pp.220-222, 1974.
Soballe K. "Hydroxyapatite ceramic coating for bone implant fixation." ACTA Orthopaed Scandin Supplem 64: pp.1-58, 1993.
Tadros M.E. Mayes I. Colloid J. Interface Sci. 72: pp.245, 1979.
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):pp.1230-1238, 2004.
Vincenzini P. Elsevier,Ceramics in Clinical Applications. Amsterdam-oxford-New York-Tokyo.3-27, 1987.
van Rosmalen G.M., Daudey P.J. and Marchee W.G.J.. "Quantitative Description of the Influence of the Inhibitor Concentration on the Growth Rate of Calcium Sulfate Dihydrate Crystals in Suspension." Industrial Crystallization 81: pp.147-154, 1982.
Weijnen M.P.C. and van Rosmalen G.M. "The Role of Additives and Impurities in the Crystallization of Gypsum." Industrial Crystallization 84, edited by S.J. Jancic and E.J. de Jong, Elsevier Science Publishers B.V. Amsterdam, pp.61-66, 1984.
Weijnen M.P.C. and van Rosmalen G.M. "The Role of Additives and Impurities in the Crystallization of Gypsum." Industrial Crystallization 84, edited by S.J. Jancic and E.J. de Jong, Elsevier Science Publishers B.V. Amsterdam, pp.61-66, 1984.
Weijnen M.P. van Rosmalen G.M. Desalination 54: pp.239, 1985.
Weijnen M.P.C. and van Rosmalen G.M. "Adsorption of Phosphonate on Gypsum crystals." J. Crystal Growth. 79: pp.157-168, 1986.
William R. Moore, Stephen E. Graves, GegoryiI. Bain. "Synthetic Bone Graft Substitutes." ANZ J. Surg 71: pp.354–361, 2001.
www.stpeters.k12.nf.ca/skel.jpg
www.sirinet.net/~jgjohnso/skeleton.html
www.suntex.com.tw
www.gec.jp/CTT_DATA/WMON/CHAP_4/html/Wmon-094.html
Ying. "Nanocrystalline apatites and composite prostheses incorporating them, and method for their production." US patent 6013591, 2000.
汪建民, 材料分析, 中國材料科學學會, 49, 122, 1998
林育弘, “硫酸鈣材料對於骨組織修補的應用.” 化工資訊與商情月刊第4期(92年10月號)
周邦彥, “骨科生醫材料之發展與應用.” 技術與訓練27卷4期, 163-171,2002.
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991.
梁智仁, “骨質疏鬆致骨折專治生物材料的研製與市場化.” 京港學術交流第五十四期, 2002
梁繼文, 礦物學, 五南出版社, 1984
黃喜麟, “燃煤電廠脫硫石膏轉化半水石膏之研究.” 1999
黃冠智, “硫酸鈣做為骨取代物材料之初步探討.” 碩士論文,國立成功大學, 2013
賴佑昌, “硫酸鈣系骨取代物之性質研究.” 碩士論文,國立成功大學, 2014
陳文正, “氫氧基磷灰石複合骨水泥基本性質及植入結果研究.” 博士論文,國立成功大學, 2002
施威任, “奈米級氫氧基磷灰石之合成及燒結.” 博士論文,國立成功大學, 2007
校內:2021-08-01公開