| 研究生: |
謝季軒 Shie, Ji-Shiuan |
|---|---|
| 論文名稱: |
半平面異向性裂紋體塑性區大小評估 Estimation of Plastic Zone Size for Cracked Anisotropic Half-plane Problem |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 正交異向性材料 、差排作用 、奇異積分方程組 、數值方法 、裂紋尖端應力強度因子 、塑性區 |
| 外文關鍵詞: | Orthotropic elastic material, Dislocation action, Singular integral equation, Numerical method, Crack tip stress intensity factor, Plastic zone size |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在研究半平面異向性裂紋體塑性區大小之評估,應用Dugdale model理論來評估塑性區大小,文中異向性彈塑性裂紋體乃利用差排密度來模擬,以差排密度為未知數建立奇異積分方程組,並藉由Gerasoulis數值方法求解差排密度近似解。數值分析中,針對不同邊界條件,探討裂紋深度、加載外力、裂紋傾斜角與異向性程度對塑性區大小之影響。
The main purpose of this study is to estimate the plastic zone size of the cracked half-plane anisotropic problem by using the Dugdale model. The elastic-plastic half-plane cracked anisotropic solid is modeled by distributed dislocation density which leads to a system of singular integral equations. Furthermore, These equations are solved by Gerasoulis numerical method . The effects of crack depth, loading, crack inclination angle and the degree of anisotropy as well as different boundary conditions on the plastic zone size are analyzed.
[1] Becker, W., Gross, D., 1987, “About the mode-II Dugdale crack solution,” Int. J. Fract. Mech., 34, 65-70.
[2] Becker, W., Gross, D., 1988, “About the Dugdale crack under mixed mode loading,” Int. J. Fract. Mech., 37, 163-170.
[3] Dugdale, D.S., 1960, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, 100-104.
[4] Erdogan, F., 1983, “Stress Intensity Factors,” ASME J. Appl., 50, 992-1002.
[5] Eshelby, J.D., Read, W.T., Shockley, W., 1953, “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, 1, 251-259.
[6] Gdoutis, E.E., 1990, “Fracture Mechanics criteria and application,” Dordrecht, Kluwer.
[7] Gerasoulis, A., 1982, “The Use of Piecewise Quadratic Polynomials for the Solution of Singular Integral Equations of Cauchy Type,” Comput. Math. With Applications, 8, 15-22.
[8] Higadhida, Y., Kamada, K., 1982, “Stress Fields around a Crack Lying Parallel to a Free Surface,” Int. J. Fracture, 19, 39-52.
[9] Lekhnitskii, S.G., 1963, “Theory of Elasticity of an Anisotropic Elastic Body,” Holden-Day, San Francisco, California.
[10] Muskhelishvili, N.I., 1953, “Some basic problems of the mathematical theory of elasticity,” J. R. Radok, trans., Noordhoff, Groningen, The Netherlands.
[11] Stroh, A.N., 1958, “Dislocations and cracks in anisotropic elasticity,” Phil. Mag., 3, 625-646.
[12] Sung, J.C., Liou, J.Y., 1995, “Analysis of a Crack Embedded in a Linear Elastic Half-Plane Solid,” ASME J. Appl., 62, 78-86.
[13] Sung, J.C., Liou, J.Y., 1995, “An Internal Crack in a Half-Plane Solid with Clamped Boundary,” Comput. Methods Appl. Engrg., 121, 361-372.
[14] Ting, T.C.T., Barnett, D.M., 1993, “Image Force on Line Dislocations in Anisotropic Elastic Half-Spaces with a Fixed Boundary,” Int. J. Solids, 30(3), 313-323.
[15] Ting, T.C.T., 1996, “Anisotropic Elasticity: Theory and Applications,” Oxford University Press, New York.
[16] Zhuang, J., Yi, D.K., Xiao, Z.M., 2011, “On the plastic zone size and crack tip opening displacement of a sub-interface crack in an infinite bi-material plate,” Philosophical Magazine, 37-41.
[17] Zhuang, J., Yi, D.K., Xiao, Z.M., 2013, “Elastic–plastic analysis of a sub-interface crack in a coating-substrate composite,” Int. J. Solids and Structures, 50, 414-422.
[18] 李奇,2013,「異向性反平面裂紋體塑性區大小之評估」,國立成功大學土木工程研究所碩士論文。
[19] 徐仲毅,2006,「半平面壓電裂紋材料之數值分析」,國立成功大學土木工程研究所碩士論文。
[20] 曾偉誌,2013,「含彈性薄層之半平面異向性裂紋體之研究」,國立成功大學土木工程研究所碩士論文。
[21] 劉鈞耀,1994,「雙層異向性材料介面附近裂紋之分析」,國立成功大學土木工程研究所博士論文。