簡易檢索 / 詳目顯示

研究生: 謝季軒
Shie, Ji-Shiuan
論文名稱: 半平面異向性裂紋體塑性區大小評估
Estimation of Plastic Zone Size for Cracked Anisotropic Half-plane Problem
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 41
中文關鍵詞: 正交異向性材料差排作用奇異積分方程組數值方法裂紋尖端應力強度因子塑性區
外文關鍵詞: Orthotropic elastic material, Dislocation action, Singular integral equation, Numerical method, Crack tip stress intensity factor, Plastic zone size
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研究半平面異向性裂紋體塑性區大小之評估,應用Dugdale model理論來評估塑性區大小,文中異向性彈塑性裂紋體乃利用差排密度來模擬,以差排密度為未知數建立奇異積分方程組,並藉由Gerasoulis數值方法求解差排密度近似解。數值分析中,針對不同邊界條件,探討裂紋深度、加載外力、裂紋傾斜角與異向性程度對塑性區大小之影響。

    The main purpose of this study is to estimate the plastic zone size of the cracked half-plane anisotropic problem by using the Dugdale model. The elastic-plastic half-plane cracked anisotropic solid is modeled by distributed dislocation density which leads to a system of singular integral equations. Furthermore, These equations are solved by Gerasoulis numerical method . The effects of crack depth, loading, crack inclination angle and the degree of anisotropy as well as different boundary conditions on the plastic zone size are analyzed.

    摘要 I Abstract II 誌謝 XI 目錄 XII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 本文綱要 2 第二章 基本公式 4 2.1 Stroh基本公式 4 2.2 曳引力 與應力場 函數 9 2.3 全平面格林函數 10 第三章 問題推演 12 3.1 半平面異向性材料受任意位置差排作用之基本解 13 3.2 奇異積分方程組 14 3.3 差排密度與應力強度因子之關係 16 3.4 Dugdale model理論求解塑性區大小 17 第四章 數值方法 19 4.1 柯西型奇異積分方程式之Gerausoulis數值方法 19 4.2 數值方法修正 22 第五章 數值結果與討論 25 5.1 正交異向性材料異向性程度 值討論 25 5.2 結果與討論 27 第六章 結論 38 參考文獻 40

    [1] Becker, W., Gross, D., 1987, “About the mode-II Dugdale crack solution,” Int. J. Fract. Mech., 34, 65-70.
    [2] Becker, W., Gross, D., 1988, “About the Dugdale crack under mixed mode loading,” Int. J. Fract. Mech., 37, 163-170.
    [3] Dugdale, D.S., 1960, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids, 8, 100-104.
    [4] Erdogan, F., 1983, “Stress Intensity Factors,” ASME J. Appl., 50, 992-1002.
    [5] Eshelby, J.D., Read, W.T., Shockley, W., 1953, “Anisotropic elasticity with applications to dislocation theory,” Acta Metallurgica, 1, 251-259.
    [6] Gdoutis, E.E., 1990, “Fracture Mechanics criteria and application,” Dordrecht, Kluwer.
    [7] Gerasoulis, A., 1982, “The Use of Piecewise Quadratic Polynomials for the Solution of Singular Integral Equations of Cauchy Type,” Comput. Math. With Applications, 8, 15-22.
    [8] Higadhida, Y., Kamada, K., 1982, “Stress Fields around a Crack Lying Parallel to a Free Surface,” Int. J. Fracture, 19, 39-52.
    [9] Lekhnitskii, S.G., 1963, “Theory of Elasticity of an Anisotropic Elastic Body,” Holden-Day, San Francisco, California.
    [10] Muskhelishvili, N.I., 1953, “Some basic problems of the mathematical theory of elasticity,” J. R. Radok, trans., Noordhoff, Groningen, The Netherlands.
    [11] Stroh, A.N., 1958, “Dislocations and cracks in anisotropic elasticity,” Phil. Mag., 3, 625-646.
    [12] Sung, J.C., Liou, J.Y., 1995, “Analysis of a Crack Embedded in a Linear Elastic Half-Plane Solid,” ASME J. Appl., 62, 78-86.
    [13] Sung, J.C., Liou, J.Y., 1995, “An Internal Crack in a Half-Plane Solid with Clamped Boundary,” Comput. Methods Appl. Engrg., 121, 361-372.
    [14] Ting, T.C.T., Barnett, D.M., 1993, “Image Force on Line Dislocations in Anisotropic Elastic Half-Spaces with a Fixed Boundary,” Int. J. Solids, 30(3), 313-323.
    [15] Ting, T.C.T., 1996, “Anisotropic Elasticity: Theory and Applications,” Oxford University Press, New York.
    [16] Zhuang, J., Yi, D.K., Xiao, Z.M., 2011, “On the plastic zone size and crack tip opening displacement of a sub-interface crack in an infinite bi-material plate,” Philosophical Magazine, 37-41.
    [17] Zhuang, J., Yi, D.K., Xiao, Z.M., 2013, “Elastic–plastic analysis of a sub-interface crack in a coating-substrate composite,” Int. J. Solids and Structures, 50, 414-422.
    [18] 李奇,2013,「異向性反平面裂紋體塑性區大小之評估」,國立成功大學土木工程研究所碩士論文。
    [19] 徐仲毅,2006,「半平面壓電裂紋材料之數值分析」,國立成功大學土木工程研究所碩士論文。
    [20] 曾偉誌,2013,「含彈性薄層之半平面異向性裂紋體之研究」,國立成功大學土木工程研究所碩士論文。
    [21] 劉鈞耀,1994,「雙層異向性材料介面附近裂紋之分析」,國立成功大學土木工程研究所博士論文。

    下載圖示 校內:2019-08-06公開
    校外:2019-08-06公開
    QR CODE