簡易檢索 / 詳目顯示

研究生: 張瑋婷
Chang, Wei-Ting
論文名稱: 透過微型核糖核酸-21/ pitx2c路徑探討二尖瓣膜逆流誘發心臟再塑形及心房顫動之機轉
Mitral regurgitation induced shear stress exacerbated cardiac remodeling and atrial fibrillation associated with miR-21/pitx2c pathway
指導教授: 劉秉彥
Liu, Ping-Yen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 二尖瓣逆流微型核糖核酸-21心房顫動細胞凋亡鈣離子恆定
外文關鍵詞: mitral regurgitation, miR-21, atrial fibrillation, apoptosis, calcium homeostasis
ORCID: https://orcid.org/0000-0001-9525-2144
ResearchGate: https://www.researchgate.net/profile/Wei_Ting_Chang6
相關次數: 點閱:131下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 退化性二尖瓣逆流(mitral regurgitation; MR)是常見的心臟疾病,因瓣膜的缺損而造成血液從左心室逆流回左心房,造成液體過負荷(volume overload) 最終引發心肌纖維化,心臟功能異常以及心律不整。目前雖有侵入性瓣膜置換手術,但仍缺乏有效的藥物治療。過去MR模式主要建立在大動物上,花費及死亡率皆高,藉超音波導引我們成功建立微創MR老鼠模型,是探討MR致病機轉一大利器。過往研究指出微型核糖核酸(miRNA)在各種心臟疾病扮演重要角色,但其於二尖瓣逆流造成之擾流對於心肌細胞的調控機制仍待釐清。本研究透過臨床病患心房組織,新穎的小動物和剪力細胞模型,探討微型核糖核酸-21 (miR-21)在二尖瓣逆流患者之調控。利用次世代定序,我們發現 miR-21在二尖瓣逆流患者的血清和心房細胞呈現高度表現。值得注意的是— miR-21在出現心房顫動(AF)的二尖瓣逆流患者呈現顯著上升,並且和調控離子通道的pitx2c表現下降相關。透過細胞模型模擬二尖瓣逆流時的微環境,我們發現剪力會誘使心房細胞凋亡和產生細胞質鈣離子的過度負荷。而抑制心房細胞的miR-21表現則可改善細胞凋亡,間隙連接和鈣離子恆定。藉由報導基因,我們也證實miR-21可以直接調控pitx2c。透過二尖瓣逆流小鼠模型,我們也發現二尖瓣逆流造成的心房纖維化,血流動力失能和心房顫動在miR-21基因剔除鼠獲得顯著改善。進一步在臨床應用層面,我們測試兩種美國食品藥物管理局核准之心衰竭藥物—血管收縮素受體腦啡肽酶抑制劑(ARNI)以及鈉-葡萄糖協同轉運蛋白2抑制劑(SGLT2 inhibitor), 發現兩者皆可在小動物模型上,降低miR-21於血液及心房組織的表現,且能改善二尖瓣逆流造成的心肌功能異常和纖維化。而回歸臨床,我們在二尖瓣逆流的老鼠模型上,測試兩種臨床上用於治療心衰竭的新穎藥物ARNI以及SGLT2i並發現兩者皆可減少血清及心肌的miR-21表現,並改善心臟功能。我們的研究成果指出-- miR-21/ pitx2c路徑在血流剪力造成之心臟再塑型和心房顫動扮演重要角,未來更期望能發展出二尖瓣逆流與心臟衰竭疾病新穎診斷與治療策略。

    Degenerative mitral regurgitation (MR), caused by the disruption of the mitral valve, induces not only the residual blood within the heart (volume overload) but triggers shear stress related cardiac fibrosis, dysfunction and arrhythmogenesis. Although valvular replacement surgeries may cease the progression of MR, it lacks pharmacological options for patients who cannot tolerate invasive procedures. Previous studies focused on large animal model of MR but the cost and mortality were high. Using an echo guided, minimal invasive technique, we established a rodent model of MR, which is useful in studying the mechanism of MR. MicroRNAs could regulate cardiac fibrosis and hypertrophy under mechanical stresses but their roles in degenerative MR remain uncertain. Hereby, through a multidiscipline approach including clinical tissues, novel animal and in vitro shear stress models, we investigated the impact of miR-21 in patients with MR. Using next generation sequencing and qPCR, miR-21 was observed with a high expression in the cardiomyocytes and sera in patients with MR. Notably, the high expression of miR-21 was most significant in MR patients with atrial fibrillation (AF) and was associated with a down-regulation of paired-like homeodomain transcription factor 2C (pitx2c), a pivotal gene regulates ion transport and influences AF. Through a microflow system mimicking the microenvironment of MR, we found that the shear stress triggered up-regulation of apoptosis and calcium overload associated markers in atrial cardiomyocytes. Suppressing miR-21 by a miR-21 inhibitor reduced apoptosis and maintained the function of gap junction as well as calcium homeostasis. Mechanistically, the reporter assay supported that miR-21 directly regulated the expression of pitx2c. In the mouse model of MR, abolishing miR-21 rescued MR induced myocardial fibrosis, hemodynamic dysfunction and provoked AF. For the potential applications of clinical uses, we tested the effects of two FDA-approved heart failure drugs, angiotensin receptor-neprilysin inhibitor (ARNI) and sodium-glucose cotransporter-2 (SGLT2) inhibitor, in the rat model of MR. Notably, both drugs suppressed the circulating and cardiac expressions of miR-21 and mitigated MR induced myocardial dysfunction and fibrosis. Collectively, our findings highlighted the regulatory mechanism of miR-21/pitx2c pathway in shear stress triggered cardiac remodeling and AF in patients with degenerative MR.

    Abstract I Chinese abstract II Acknowledgement III Contents IV Figure list VI Abbreviations VIII Chapter 1. Introduction 1 1.1 The cardiac remodeling in patients with mitral regurgitation (MR) 1.2 The effect of shear stress on the heart 1.3 The role of miRNA in cardiac hypertrophy and heart failure 1.4 The cardiac remodeling of the left atrium and atrial fibrillation in MR 1.5 The involvement of microRNAs in the development of atrial fibrillation 1.6 Regulatory effects of shear stress on miRNAs expression in cardiac cells 1.7 Calcium homeostasis in shear stress and cardiac diseases 1.8 The PITX2C in MR-induced cardiac remodeling Chapter 2. Objective and Specific Aims 13 Chapter 3. Materials and Methods 14 3.1 Clinical study design and human left atrial tissue collections 3.2 Next generation sequencing analysis of left atrial tissues 3.3 MicroRNA expression and quantitative real time-polymerase chain reaction 3.4 Animal models of degenerative MR and animal study designs 3.5 Animal echocardiography 3.6 Measurements of electrocardiography in animals 3.7 Pressure-volume loop 3.8 Programmed atrial burst pacing for atrial fibrillation provocations 3.9 Histology analysis 3.10 Cell cultures 3.11 Microflow mediated shear stress system 3.12 In situ hybridization with miR-21 probe 3.13 Ca2+ measurement 3.14 Luciferase vector construction 3.15 Western blotting 3.16 Statistical analysis Chapter 4. Results 22 4.1 A high expression of miR-21 in left atrial cardiomyocytes was associated with apoptosis and arrhythmogenesis in patients with mitral regurgittaion 4.2 A negative correaltion of miR-21 with pitx2c/tbx5 expressions in left atrial cariomyocytes in patients and rat model with MR 4.3 The high cardiac expression of miR-21 was associated with an up-regulations of apoptosis, atrial fibrillation and cardiac fibrosis in the rodent model of MR 4.4 Suppressing miR-21 mitigates shear stress-induced apoptosis and calcium disturbance in HL-1 cardiomyocyte 4.5 MR triggered myocardial dysfunction were rescued in miR-21-/- mice 4.6 Abolishing miR-21 mitigated MR induced hemodynamic compromise and atrial fibrillation susceptibility 4.7 Abolishing miR-21 improved MR induced cardiac fibrosis, apoptosis and intra-cellular calcium overload 4.8 FDA-approved drugs for heart failure improves MR induced cardiac dysfunction and arrhythmogenesis, which is associated with miR-21 expression 4.9 The effect of ARNI on electrophysiology, arrhythmogenesis and functional capacity in the rodent model of MR Chapter 5. Discussion 30 5.1 Mini-invasive rodent model of MR 5.2 Molecular mechanisms of MR induced cardiac remodeling 5.3 The effect of novel HF drugs on degenerative MR 5.6.1 ARNI for the Treatment of MR 5.6.2 DAPA for the treatment of MR 5.4 MR induced arrhythmogenesis and calcium signal disturbance 5.5 Shear stress induced calcium homeostasis 5.6 Study limitations 5.7 Future perspectives Chapter 6. Conclusion 36 References 37 Figures 48

    1. Grigioni F, Tribouilloy C, Avierinos JF, Barbieri A, Ferlito M, Trojette F, Tafanelli L, Branzi A, Szymanski C, Habib G, et al. Outcomes in mitral regurgitation due to flail leaflets a multicenter European study. JACC Cardiovasc Imaging. 2008;1:133-141. doi: 10.1016/j.jcmg.2007.12.005
    2. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, Scott C, Schaff HV, Tajik AJ. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352:875-883. doi: 10.1056/NEJMoa041451
    3. Candan O, Ozdemir N, Aung SM, Hatipoglu S, Karabay CY, Guler A, Gecmen C, Dogan C, Omaygenc O, Bakal RB. Atrial longitudinal strain parameters predict left atrial reverse remodeling after mitral valve surgery: a speckle tracking echocardiography study. Int J Cardiovasc Imaging. 2014;30:1049-1056. doi: 10.1007/s10554-014-0433-9
    4. McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol. 2015;12:711-717. doi: 10.1038/nrcardio.2015.101
    5. Carabello BA, Nakano K, Corin W, Biederman R, Spann JF, Jr. Left ventricular function in experimental volume overload hypertrophy. Am J Physiol. 1989;256:H974-981. doi: 10.1152/ajpheart.1989.256.4.H974
    6. Yellin EL, Yoran C, Sonnenblick EH, Gabbay S, Frater RW. Dynamic changes in the canine mitral regurgitant orifice area during ventricular ejection. Circ Res. 1979;45:677-683. doi: 10.1161/01.res.45.5.677
    7. Chang WT, Lin YW, Chen CY, Chen ZC, Shih JY, Wu CC, Luo CY, Liu PY. Mineralocorticoid Receptor Antagonists Mitigate Mitral Regurgitation-Induced Myocardial Dysfunction. Cells. 2022;11. doi: 10.3390/cells11172750
    8. Lin YW, Chen CY, Shih JY, Cheng BC, Chang CP, Lin MT, Ho CH, Chen ZC, Fisch S, Chang WT. Dapagliflozin Improves Cardiac Hemodynamics and Mitigates Arrhythmogenesis in Mitral Regurgitation-Induced Myocardial Dysfunction. J Am Heart Assoc. 2021;10:e019274. doi: 10.1161/JAHA.120.019274
    9. Son MJ, Kim JC, Kim SW, Chidipi B, Muniyandi J, Singh TD, So I, Subedi KP, Woo SH. Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5-trisphosphate receptors and Ca(2+) release. J Physiol. 2016;594:2985-3004. doi: 10.1113/JP270887
    10. Gosgnach W, Challah M, Coulet F, Michel JB, Battle T. Shear stress induces angiotensin converting enzyme expression in cultured smooth muscle cells: possible involvement of bFGF. Cardiovasc Res. 2000;45:486-492. doi: 10.1016/s0008-6363(99)00269-2
    11. Barauna VG, Magalhaes FC, Campos LC, Reis RI, Kunapuli SP, Costa-Neto CM, Miyakawa AA, Krieger JE. Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms. Biochem Biophys Res Commun. 2013;434:647-652. doi: 10.1016/j.bbrc.2013.04.005
    12. Boycott HE, Barbier CS, Eichel CA, Costa KD, Martins RP, Louault F, Dilanian G, Coulombe A, Hatem SN, Balse E. Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci U S A. 2013;110:E3955-3964. doi: 10.1073/pnas.1309896110
    13. Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng. 2002;30:402-408. doi: 10.1114/1.1476016
    14. Damjanovic SS, Neskovic AN, Petakov MS, Popovic V, Vujisic B, Petrovic M, Nikolic-Djurovic M, Simic M, Pekic S, Marinkovic J. High output heart failure in patients with newly diagnosed acromegaly. Am J Med. 2002;112:610-616. doi: 10.1016/s0002-9343(02)01094-x
    15. Falsetti HL, Carroll RJ, Swope RD, Chen CJ. Turbulent blood flow in the ascending aorta of dogs. Cardiovasc Res. 1983;17:427-436. doi: 10.1093/cvr/17.7.427
    16. Asai H, Shingu Y, Yamakawa T, Niwano H, Wakasa S, Ooka T, Kato H, Tachibana T, Matsui Y. Left-Ventricular Plication Reduces Wall Stress and Cardiomyocyte Hypertrophy in a Rat Model of Ischemic Cardiomyopathy. Eur Surg Res. 2017;58:69-80. doi: 10.1159/000452682
    17. Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, Lin H, Xiao L, Maguy A, Qi XY, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest. 2013;123:1939-1951. doi: 10.1172/JCI62185
    18. Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA. Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol. 2009;19:2357-2362. doi: 10.1007/s00330-009-1503-6
    19. Melman YF, Shah R, Das S. MicroRNAs in heart failure: is the picture becoming less miRky? Circ Heart Fail. 2014;7:203-214. doi: 10.1161/CIRCHEARTFAILURE.113.000266
    20. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J. 2010;277:2015-2021. doi: 10.1111/j.1742-4658.2010.07632.x
    21. Vettori S, Gay S, Distler O. Role of MicroRNAs in Fibrosis. Open Rheumatol J. 2012;6:130-139. doi: 10.2174/1874312901206010130
    22. Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2019-2030. doi: 10.1016/j.bbadis.2016.11.034
    23. Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X, Xia J. The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One. 2012;7:e44906. doi: 10.1371/journal.pone.0044906
    24. Zhang J, Xing Q, Zhou X, Li J, Li Y, Zhang L, Zhou Q, Tang B. Circulating miRNA21 is a promising biomarker for heart failure. Mol Med Rep. 2017;16:7766-7774. doi: 10.3892/mmr.2017.7575
    25. Chang WT, Shih JY, Lin YW, Huang TL, Chen ZC, Chen CL, Chu JS, Liu PY. miR-21 upregulation exacerbates pressure overload-induced cardiac hypertrophy in aged hearts. Aging (Albany NY). 2022;14:5925-5945. doi: 10.18632/aging.204194
    26. Kirchhof P, Auricchio A, Bax J, Crijns H, Camm J, Diener HC, Goette A, Hindricks G, Hohnloser S, Kappenberger L, et al. Outcome parameters for trials in atrial fibrillation: executive summary. Eur Heart J. 2007;28:2803-2817. doi: 10.1093/eurheartj/ehm358
    27. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63:2335-2345. doi: 10.1016/j.jacc.2014.02.555
    28. Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802-809. doi: 10.1016/j.jacc.2007.09.064
    29. Suri RM, Schaff HV, Dearani JA, Sundt TM, Daly RC, Mullany CJ, Enriquez-Sarano M, Orszulak TA. Recovery of left ventricular function after surgical correction of mitral regurgitation caused by leaflet prolapse. J Thorac Cardiovasc Surg. 2009;137:1071-1076. doi: 10.1016/j.jtcvs.2008.10.026
    30. Akowuah E, Burdett C, Khan K, Goodwin A, Lage IB, El-Saegh M, Smailes T, Hunter S. Early and Late Outcomes After Minimally Invasive Mitral Valve Repair Surgery. J Heart Valve Dis. 2015;24:470-477.
    31. Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling. Int J Mol Sci. 2016;17. doi: 10.3390/ijms17071120
    32. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, Da Costa Martins P, Contaldi C, Saccani Jotti G, Franzone A, Galastri L, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63:920-927. doi: 10.1016/j.jacc.2013.09.041
    33. Adam O, Lohfelm B, Thum T, Gupta SK, Puhl SL, Schafers HJ, Bohm M, Laufs U. Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 2012;107:278. doi: 10.1007/s00395-012-0278-0
    34. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-984. doi: 10.1038/nature07511
    35. Ge L, Sotiropoulos F. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng. 2010;132:014505. doi: 10.1115/1.4000162
    36. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327-387. doi: 10.1152/physrev.00047.2009
    37. Lee DY, Lin TE, Lee CI, Zhou J, Huang YH, Lee PL, Shih YT, Chien S, Chiu JJ. MicroRNA-10a is crucial for endothelial response to different flow patterns via interaction of retinoid acid receptors and histone deacetylases. Proc Natl Acad Sci U S A. 2017;114:2072-2077. doi: 10.1073/pnas.1621425114
    38. Wang KC, Nguyen P, Weiss A, Yeh YT, Chien HS, Lee A, Teng D, Subramaniam S, Li YS, Chien S. MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol. 2014;34:1437-1445. doi: 10.1161/ATVBAHA.114.303473
    39. Zhou J, Wang KC, Wu W, Subramaniam S, Shyy JY, Chiu JJ, Li JY, Chien S. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355-10360. doi: 10.1073/pnas.1107052108
    40. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015;12:361-374. doi: 10.1038/nrcardio.2015.38
    41. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol. 2018;9:1380. doi: 10.3389/fphys.2018.01380
    42. Andrews AM, Jaron D, Buerk DG, Barbee KA. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry. Cell Mol Bioeng. 2014;7:510-520. doi: 10.1007/s12195-014-0351-x
    43. Bailey LE, Ong SD. Calcium pools in excitation-contraction coupling in the cat heart. Recent Adv Stud Cardiac Struct Metab. 1974;4:255-271.
    44. Bonilla IM, Belevych AE, Baine S, Stepanov A, Mezache L, Bodnar T, Liu B, Volpe P, Priori S, Weisleder N, et al. Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Sci Rep. 2019;9:10179. doi: 10.1038/s41598-019-46427-x
    45. Chiu WT, Chang HA, Lin YH, Lin YS, Chang HT, Lin HH, Huang SC, Tang MJ, Shen MR. Bcl(-)2 regulates store-operated Ca(2+) entry to modulate ER stress-induced apoptosis. Cell Death Discov. 2018;4:37. doi: 10.1038/s41420-018-0039-4
    46. Ma JF, Yang F, Mahida SN, Zhao L, Chen X, Zhang ML, Sun Z, Yao Y, Zhang YX, Zheng GY, et al. TBX5 mutations contribute to early-onset atrial fibrillation in Chinese and Caucasians. Cardiovasc Res. 2016;109:442-450. doi: 10.1093/cvr/cvw003
    47. Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol. 2017;595:4019-4026. doi: 10.1113/JP273123
    48. Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, Bis JC, Lin H, Chung MK, Nielsen JB, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation. 2014;130:1225-1235. doi: 10.1161/CIRCULATIONAHA.114.009892
    49. Nadadur RD, Broman MT, Boukens B, Mazurek SR, Yang X, van den Boogaard M, Bekeny J, Gadek M, Ward T, Zhang M, et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci Transl Med. 2016;8:354ra115. doi: 10.1126/scitranslmed.aaf4891
    50. Torrado M, Franco D, Lozano-Velasco E, Hernandez-Torres F, Calvino R, Aldama G, Centeno A, Castro-Beiras A, Mikhailov A. A MicroRNA-Transcription Factor Blueprint for Early Atrial Arrhythmogenic Remodeling. Biomed Res Int. 2015;2015:263151. doi: 10.1155/2015/263151
    51. Dai W, Laforest B, Tyan L, Shen KM, Nadadur RD, Alvarado FJ, Mazurek SR, Lazarevic S, Gadek M, Wang Y, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. Elife. 2019;8. doi: 10.7554/eLife.41814
    52. Ibarrola J, Garcia-Pena A, Matilla L, Bonnard B, Sadaba R, Arrieta V, Alvarez V, Fernandez-Celis A, Gainza A, Navarro A, et al. A New Role for the Aldosterone/Mineralocorticoid Receptor Pathway in the Development of Mitral Valve Prolapse. Circ Res. 2020;127:e80-e93. doi: 10.1161/CIRCRESAHA.119.316427
    53. Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, Jaffe IZ, Caprio M. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Front Endocrinol (Lausanne). 2019;10:584. doi: 10.3389/fendo.2019.00584
    54. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709-717. doi: 10.1056/NEJM199909023411001
    55. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993-1004. doi: 10.1056/NEJMoa1409077
    56. Kang DH, Park SJ, Shin SH, Hong GR, Lee S, Kim MS, Yun SC, Song JM, Park SW, Kim JJ. Angiotensin Receptor Neprilysin Inhibitor for Functional Mitral Regurgitation. Circulation. 2019;139:1354-1365. doi: 10.1161/CIRCULATIONAHA.118.037077
    57. Plosker GL. Dapagliflozin: a review of its use in patients with type 2 diabetes. Drugs. 2014;74:2191-2209. doi: 10.1007/s40265-014-0324-3
    58. Jung CH, Jang JE, Park JY. A Novel Therapeutic Agent for Type 2 Diabetes Mellitus: SGLT2 Inhibitor. Diabetes Metab J. 2014;38:261-273. doi: 10.4093/dmj.2014.38.4.261
    59. Nakagawa Y, Kuwahara K. Sodium-Glucose Cotransporter-2 inhibitors are potential therapeutic agents for treatment of non-diabetic heart failure patients. J Cardiol. 2020;76:123-131. doi: 10.1016/j.jjcc.2020.03.009
    60. McMurray JJV, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, et al. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur J Heart Fail. 2019;21:665-675. doi: 10.1002/ejhf.1432
    61. Kim YG, Han SJ, Kim DJ, Lee KW, Kim HJ. Association between sodium glucose co-transporter 2 inhibitors and a reduced risk of heart failure in patients with type 2 diabetes mellitus: a real-world nationwide population-based cohort study. Cardiovasc Diabetol. 2018;17:91. doi: 10.1186/s12933-018-0737-5
    62. Lunder M, Janic M, Japelj M, Juretic A, Janez A, Sabovic M. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol. 2018;17:153. doi: 10.1186/s12933-018-0797-6
    63. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380:347-357. doi: 10.1056/NEJMoa1812389
    64. Tanajak P, Sa-Nguanmoo P, Sivasinprasasn S, Thummasorn S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol. 2018;236:69-84. doi: 10.1530/JOE-17-0457
    65. Yurista SR, Sillje HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, van Goor H, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21:862-873. doi: 10.1002/ejhf.1473
    66. Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G, Fedak PWM, Verma S, Dyck JRB. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. JACC Basic Transl Sci. 2017;2:347-354. doi: 10.1016/j.jacbts.2017.07.003
    67. Zhou Y, Wu W. The Sodium-Glucose Co-Transporter 2 Inhibitor, Empagliflozin, Protects against Diabetic Cardiomyopathy by Inhibition of the Endoplasmic Reticulum Stress Pathway. Cell Physiol Biochem. 2017;41:2503-2512. doi: 10.1159/000475942
    68. Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, Coronel R, Weber NC, Zuurbier CJ. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front Physiol. 2018;9:1575. doi: 10.3389/fphys.2018.01575
    69. Wang J, Duan L, Gao Y, Zhou S, Liu Y, Wei S, An S, Liu J, Tian L, Wang S. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice. Mol Cell Endocrinol. 2018;472:149-158. doi: 10.1016/j.mce.2017.12.005
    70. Das NA, Carpenter AJ, Belenchia A, Aroor AR, Noda M, Siebenlist U, Chandrasekar B, DeMarco VG. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal. 2020;68:109506. doi: 10.1016/j.cellsig.2019.109506
    71. Mohamed DI, Khairy E, Saad SST, Habib EK, Hamouda MA. Potential protective effects of Dapagliflozin in gentamicin induced nephrotoxicity rat model via modulation of apoptosis associated miRNAs. Gene. 2019;707:198-204. doi: 10.1016/j.gene.2019.05.009
    72. Mone P, Lombardi A, Kansakar U, Varzideh F, Jankauskas SS, Pansini A, Marzocco S, De Gennaro S, Famiglietti M, Macina G, et al. Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Diabetes. J Pharmacol Exp Ther. 2023;384:116-122. doi: 10.1124/jpet.121.001251
    73. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135:e146-e603. doi: 10.1161/CIR.0000000000000485
    74. Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31:1958-1966. doi: 10.1093/eurheartj/ehq222
    75. Anyanwu AC, Adams DH. Etiologic classification of degenerative mitral valve disease: Barlow's disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg. 2007;19:90-96. doi: 10.1053/j.semtcvs.2007.04.002
    76. Yao C, Veleva T, Scott L, Jr., Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha ID, et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation. 2018;138:2227-2242. doi: 10.1161/CIRCULATIONAHA.118.035202
    77. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303-371. doi: 10.1016/j.echo.2017.01.007
    78. Chen CC, Chang CP. Development of a three-channel automatic climbing training system for rat rehabilitation after ischemic stroke. Braz J Med Biol Res. 2020;53:e8943. doi: 10.1590/1414-431X20208943
    79. Wang TY, Chang MM, Li YJ, Huang TC, Chien S, Wu CC. Maintenance of HDACs and H3K9me3 Prevents Arterial Flow-Induced Venous Endothelial Damage. Front Cell Dev Biol. 2021;9:642150. doi: 10.3389/fcell.2021.642150
    80. Wei SY, Shih YT, Wu HY, Wang WL, Lee PL, Lee CI, Lin CY, Chen YJ, Chien S, Chiu JJ. Endothelial Yin Yang 1 Phosphorylation at S118 Induces Atherosclerosis Under Flow. Circ Res. 2021;129:1158-1174. doi: 10.1161/CIRCRESAHA.121.319296
    81. Zhao Z, Yang Y, Wang J, Dong Z, Niu X, Liu E, Liu T, Li L, Liang Y, Li G. Combined treatment with valsartan and fluvastatin to delay disease progression in nonpermanent atrial fibrillation with hypertension: A clinical trial. Clin Cardiol. 2020;43:1592-1600. doi: 10.1002/clc.23487
    82. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39 e14. doi: 10.1016/j.echo.2014.10.003
    83. Smith JW, O'Neal WT, Shoemaker MB, Chen LY, Alonso A, Whalen SP, Soliman EZ. PR-Interval Components and Atrial Fibrillation Risk (from the Atherosclerosis Risk in Communities Study). Am J Cardiol. 2017;119:466-472. doi: 10.1016/j.amjcard.2016.10.016
    84. Galderisi M, Benjamin EJ, Evans JC, D'Agostino RB, Fuller DL, Lehman B, Levy D. Impact of heart rate and PR interval on Doppler indexes of left ventricular diastolic filling in an elderly cohort (the Framingham Heart Study). Am J Cardiol. 1993;72:1183-1187. doi: 10.1016/0002-9149(93)90991-k
    85. Kim KH, Kim YJ, Ohn JH, Yang J, Lee SE, Lee SW, Kim HK, Seo JW, Sohn DW. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125:1390-1401. doi: 10.1161/CIRCULATIONAHA.111.065300
    86. Pu M, Gao Z, Li J, Sinoway L, Davidson WR, Jr. Development of a new animal model of chronic mitral regurgitation in rats under transesophageal echocardiographic guidance. J Am Soc Echocardiogr. 2005;18:468-474. doi: 10.1016/j.echo.2004.10.005
    87. Kim KH, Kim YJ, Lee SP, Kim HK, Seo JW, Sohn DW, Oh BH, Park YB. Survival, exercise capacity, and left ventricular remodeling in a rat model of chronic mitral regurgitation: serial echocardiography and pressure-volume analysis. Korean Circ J. 2011;41:603-611. doi: 10.4070/kcj.2011.41.10.603
    88. Pu M, Gao Z, Zhang X, Liao D, Pu DK, Brennan T, Davidson WR, Jr. Impact of mitral regurgitation on left ventricular anatomic and molecular remodeling and systolic function: implication for outcome. Am J Physiol Heart Circ Physiol. 2009;296:H1727-1732. doi: 10.1152/ajpheart.00882.2008
    89. Antoine C, Mantovani F, Benfari G, Mankad SV, Maalouf JF, Michelena HI, Enriquez-Sarano M. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights. Circ Cardiovasc Imaging. 2018;11:e005971. doi: 10.1161/CIRCIMAGING.116.005971
    90. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143:e72-e227. doi: 10.1161/CIR.0000000000000923
    91. Borer JS, Sharma A. Drug Therapy for Heart Valve Diseases. Circulation. 2015;132:1038-1045. doi: 10.1161/CIRCULATIONAHA.115.016006
    92. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res. 2018;122:877-902. doi: 10.1161/CIRCRESAHA.117.311401
    93. Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G, Tsilimigras DI, Tzatzaki E, Theocharis S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med. 2017;5:326. doi: 10.21037/atm.2017.06.27
    94. Liu MQ, Chen Z, Chen LX. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin. 2016;37:425-443. doi: 10.1038/aps.2015.145
    95. Wang S, Binder P, Fang Q, Wang Z, Xiao W, Liu W, Wang X. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol. 2018;175:1293-1304. doi: 10.1111/bph.13888
    96. Wiersma M, Meijering RAM, Qi XY, Zhang D, Liu T, Hoogstra-Berends F, Sibon OCM, Henning RH, Nattel S, Brundel B. Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation. J Am Heart Assoc. 2017;6. doi: 10.1161/JAHA.117.006458
    97. Jianzhou Chen JX, Guannan Li, Guixing He, Wei Tan, Suhui Zhu, Qinhua Chen, Han Wu Xinlin Zhang, Lian Wang, Biao Xu. Endoplasmic reticulum stress associated apoptosis implicated in atrial fibrillation. Int J Clin Exp Pathol. 2016;9:1652-1659.
    98. Slipczuk L, Rafique AM, Davila CD, Beigel R, Pressman GS, Siegel RJ. The Role of Medical Therapy in Moderate to Severe Degenerative Mitral Regurgitation. Rev Cardiovasc Med. 2016;17:28-39.
    99. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599-3726. doi: 10.1093/eurheartj/ehab368
    100. Writing C, Maddox TM, Januzzi JL, Jr., Allen LA, Breathett K, Butler J, Davis LL, Fonarow GC, Ibrahim NE, Lindenfeld J, et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77:772-810. doi: 10.1016/j.jacc.2020.11.022
    101. Martens P, Nuyens D, Rivero-Ayerza M, Van Herendael H, Vercammen J, Ceyssens W, Luwel E, Dupont M, Mullens W. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin Res Cardiol. 2019;108:1074-1082. doi: 10.1007/s00392-019-01440-y
    102. Suo Y, Yuan M, Li H, Zhang Y, Li Y, Fu H, Han F, Ma C, Wang Y, Bao Q, et al. Sacubitril/Valsartan Improves Left Atrial and Left Atrial Appendage Function in Patients With Atrial Fibrillation and in Pressure Overload-Induced Mice. Front Pharmacol. 2019;10:1285. doi: 10.3389/fphar.2019.01285
    103. Dibb KM, Clarke JD, Horn MA, Richards MA, Graham HK, Eisner DA, Trafford AW. Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail. 2009;2:482-489. doi: 10.1161/CIRCHEARTFAILURE.109.852228
    104. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098-2107. doi: 10.1007/s00125-018-4669-0
    105. Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, Kuder J, Murphy SA, Bhatt DL, Leiter LA, et al. Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. Circulation. 2019;139:2516-2527. doi: 10.1161/CIRCULATIONAHA.119.039996
    106. Chang WT, Lin YW, Ho CH, Chen ZC, Liu PY, Shih JY. Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Arch Toxicol. 2021;95:659-671. doi: 10.1007/s00204-020-02951-8
    107. Wang Y, Shi J, Tong X. Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci. 2021;22. doi: 10.3390/ijms22168782

    下載圖示 校內:2025-06-01公開
    校外:2025-06-01公開
    QR CODE