簡易檢索 / 詳目顯示

研究生: 蘇筱筑
Su, Hsiao-Chu,
論文名稱: 含羧基聚芴衍生物的合成、鑑定與其在化學感測器之應用
Synthesis, Characterization, and Chemosensory Application of Water-Soluble Carboxylated Polyfluorenes
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 聚芴高分子共軛高分子電解質螢光感測器
外文關鍵詞: Chemosensor, polyfluorene, conjugated polyelectrolyte
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光性共軛高分子是極重要的金屬離子感測性材料,本研究利用Suzuki聚合反應合成出側鏈帶有羧基 (-CH2CH2COO-Na+)的聚芴高分子P1以及主鏈摻入芳香噁二唑的高分子P2,探討其光學性質及感測特性,此類高分子可以溶於水醇類等高極性溶劑,在溶液態的吸收和放光皆和聚芴相似,分別位於在385 nm與430 nm附近。
    其次探討在中性條件下P1及P2對金屬的辨識能力以及形成錯合物的機制,當加入亞銅離子 (Cu+)及銅離子 (Cu2+)後,P1及P2螢光光譜產生明顯的淬熄,P1對Cu+及Cu2+的Stern-Volmer係數 (Ksv)值高達3.5×106及5.78×106 M-1,推測是銅離子造成聚集誘導 (aggregation-induced)之螢光淬熄,而由Job’s Plot得知高分子P1與亞銅離子及銅離子形成錯合物的配位比均為2:1,與文獻指出銅離子與羧基易形成的4配位數相符合。在其它的金屬離子的干擾之下,P1對亞銅離子及銅離子仍具有極佳的選擇性。在酸性環境下,因P1之COOH基團間產生強氫鍵而形成聚集,導致其螢光淬熄 (相對於中性溶液之螢光),但在鹼性環性下,由於COO-間的電荷排斥力使聚集現象減弱,因而產生螢光增強的現象。另外,在酸性、鹼性條件下加入Cu2+只產生些微淬熄,且加入EDTA後其螢光光譜具有完全可逆性,但中性狀態下如上所述產生明顯的淬熄,加入EDTA時螢光的回復性不佳。
    研究結果發現,P1對Cu+及Cu2+具有極高的敏感性與選擇性,未來有潛力成為Cu+及Cu2+的有效感測器。

    Fluorescent conjugated polymers are important chemosensory materials for metal ions. However, the solubility of conjugated polymers is usually too low to be applied in aqueous solutions. We have synthesized two water-soluble conjugated polymers (carboxylated polyfluorenes P1, P2) by the Suzuki coupling reaction to investigate their chemical sensory characteristics. Poly[9,9’-bis(3’’-propanoate)fluoren-2,7-yl] sodium salt (P1) and its copolymer with 1,3,4-oxadiazole (P2) were dissolved in aqueous solutions, their absorption and fluorescence variations in the presence of various metal cations and under different pH were investigated to evaluate their sensory properties.
    The recognition ability of P1 and P2 to various metal ions was then studied and their mechanism in complex formation was proposed accordingly. The fluorescence spectra of neutral aqueous solutions of P1 and P2 were significantly quenched in the presence of Cu+ and Cu2+. The fluorescence responses of P1 and P2 are very similar that the discussion is focused on P1’s results. The sensitivity of P1 to Cu+ and Cu2+ are very high, with the Stern-Volmer constants (Ksv) being 3.5×106 and 5.78×106 M-1, respectively. The fluorescence quenching has been attributed to polymer aggregation induced by copper ion. Moreover, the ratios of P1 repeat unit over Cu+ or Cu2+ were 2:1 obtained from the Job’s plot, indicating that copper ions are coordinated with four carboxyl groups. In addition, P1 shows high selectivity to Cu+ or Cu2+ in the presence of various metal ions.
    Under acidic conditions, the fluorescence of neat P1 is significantly quenched, which is caused by the formation of aggregation due to strong hydrogen bonding between COOH groups. However, under basic conditions the fluorescence is enhanced due to reduced aggregation resulting from repulsion between COO- groups. In addition, under acidic and basic conditions the fluorescence quenching of P1 by Cu2+ is slight; but it is reversible by adding excess EDTA. However, in neutral aqueous solutions the quenching is significant; and the fluorescence recovers only slightly by EDTA, suggesting that P1’s COOH groups compete with EDTA in coordinating with Cu2+.
    Our results demonstrate that P1 shows very high sensitivity and selectivity in recognizing Cu+ and Cu2+. Its potential application as chemical sensor for Cu+ and Cu2+ can be expected.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XV 流程目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 共軛高分子的應用及性質 3 1-2-1 共軛高分子在化學感測器上的應用 3 1-2-2 水溶性共軛高分子電解質 4 1-3 感測器的介紹 4 1-3-1 化學感測器基本架構 5 1-3-2 螢光化學感測器 5 1-3-3 金屬離子感測器介紹 7 1-4 感測器的特性 8 1-4-1 靈敏度 8 1-4-2 選擇性 9 1-4-3 可逆性 9 1-4-4 準確性 10 1-5 螢光感測器的訊號變化與傳遞機制 10 1-5-1 激發雙體 (Excimer)的形成 10 1-5-2 光誘導電子轉移 (Photoinduced-Electron Transfer, PET) 11 1-5-3 分子內部電荷轉移 (Intramolecular Charge Transfer,ICT) 13 1-5-4 光誘導的能量傳遞 (Photoinduced Energy Transfer) 15 1-5-5 聚集誘導螢光淬熄 (Aggregation-Induced Fluorescence Quenching) 16 1-6 聚芴和其衍生物的特性 16 1-7 研究目的與動機 17 第二章 文獻回顧 18 文獻回顧 18 2-1 螢光理論 18 2-2 螢光淬熄效應 24 2-2-1 動態淬熄模式 (Dynamic Quenching) 24 2-2-2 靜態淬熄模式 (Static Quenching) 25 2-2-3 綜合動態和靜態的淬熄模式 (Sphere of Action Model) 27 2-3 反應機制 29 2-3-1 Suzuki coupling Reaction 29 2-3-2 Miyaura Borylation Reactions 29 2-4 乙二胺四醋酸 (Ethylenediaminetetraacetic acid, EDTA) 30 2-4-1 乙二胺四醋酸的介紹 30 2-4-2 乙二胺四醋酸-金屬錯合物介紹 32 第三章 實驗內容 34 3-1 實驗裝置與設備 34 3-2 鑑定測量儀器 35 3-3 物性及光電性質測量儀器 36 3-4 待測溶液的配製與感測器的量測 39 3-5 實驗藥品與材料 40 3-6 反應流程 42 3-7 單體以及高分子的合成 43 第四章 結果與討論 47 結果與討論 47 4-1 單體與高分子的合成與鑑定 48 4-1-1 核磁共振光譜 (NMR) 48 4-1-2 元素分析儀 (EA) 49 4-2 高分子性質的測量與分析 56 4-2-1 高分子分子量分析 (GPC) 56 4-2-2 高分子熱性質的分析 57 4-3 光學性質 59 4-3-1 高分子在溶液中及薄膜態的光學性質 59 4-3-2 相對量子效率 62 4-3-3 高分子P1在溶液態時對一價金屬陽離子的感測 62 4-3-4 高分子P1在溶液態時對二價金屬陽離子的感應 64 4-3-5 高分子P2在溶液態時對一價金屬陽離子的感應 66 4-3-6 高分子P2在溶液態時對二價金屬陽離子的感應 66 4-3-7 化學感測器P1對Cu+與Cu2+靈敏度的探討 67 4-3-8 化學感測器P1對Cu+與Cu2+ 之 Job’s plot探討 71 4-3-9 化學感測器P1對Cu2+的可逆性 73 4-3-10 化學感測器對Cu+、Cu2+選擇性的探討 76 4-3-11 化學感測器P1在酸性環境下的光學性質 79 4-3-12 化學感測器P1在鹼性環境下的光學性質 81 第五章 結論 83 參考文獻 84

    1.McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chemical Reviews 2000, 100, 2537–2574.
    2.Clark, L. C., Jr; LYONS, C. Ann. N. Y. Acad. Sci. 1962, 102, 29–45.
    3.吳知易,國立成功大學化學工程研究所博士論文 (2005).
    4.Pinto, M. R.; Schanze, K. S. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 7505–7510.
    5.Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical Reviews 2007, 107, 1339–1386.
    6.Chen, L.; McBranch, D. W.; Wang, H.-L.; Helgeson, R.; Wudl, F.; Whitten, D. G. PNAS 1999, 96, 12287–12292.
    7.Kumaraswamy, S.; Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W.; Ley, K.; Achyuthan, K.; McBranch, D.; Whitten, D. PNAS 2004, 101, 7511–7515.
    8.Adam, H.; Stanislaw, G.; Folke, I. Pure Appl Chem 1991, 63, 1274–1250.
    9.Cammann, K.; Lemke, U.; Rohen, A.; Sander, J.; Wilken, H.; Winter, B. Angewandte Chemie International Edition in English 1991, 30, 516–539.
    10.Valeur, B.; Leray, I. Coordination Chemistry Reviews 2000, 205, 3–40.
    11.Schemehl, R. H.; Li, C. J.; Xia, W. S.; Mague, J. T.; Luo, C. P.; Guldi, D. M. J. Phys. Chem. B. 2002, 106, 833.
    12.Masilamani, D.; Lucas, M. E. In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1992.
    13.In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W.; Comstock, M. J.; Comstock, M. J., Eds.; American Chemical Society: Washington, DC, 1993; Vol. 538, pp. i–vi.
    14.Lee, J. W.; Jung, H. S.; Kwon, P. S.; Kim, J. W.; Bartsch, R. A.; Kim, Y.; Kim, S.-J.; Kim, J. S. Organic Letters 2008, 10, 3801–3804.
    15.In Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W.; Comstock, M. J.; Comstock, M. J., Eds.; American Chemical Society: Washington, DC, 1993; Vol. 538, pp. i–vi.
    16.De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566.
    17.Eggins, B. R. Biosensors-An Introduction, John Wiley &Sons: Chichester, 1997.
    18.Marquis, D.; Desvergne, J.-P. Chem. Phys. Lett. 1994, 230, 131–136.
    19.Bryan, A. J.; De Silva, A. P.; De Silva, S. A.; Rupasinghe, R. A. D. D.;
    Sandanayake, K. R. A. S. Biosensors. 1989, 4, 169.
    20.Bissell, R. A.; De Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.;
    Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 21,
    187.
    21.Bergonzi, R.; Fabbrizzi, L.; Licchelli, M.; Mangano, C. Coord. Chem. Rev. 1998, 170, 31–46.
    22.De Silva, A. P.; De Silva, S. A. J. Chem. Soc., Chem. Commun. 1986,
    1709-1710
    23.Desvergne, J. -P.; Czarnik, A. W. Chemosensors for Ion and Molecule Recognition, NATO ASI Ser., 492, Kluwer﹕ Dordrecht, 1997.
    24.Scherer, T.; van Stokkum, I. H. M.; Brouwer, A. M.; Verhoeven, J. W. J. Phys. Chem. 1994, 98, 10539–10549.
    25.J. R. Lakowicz. Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York, 13, 1999.
    26.Lavigne, J. J.; Broughton, D. L.; Wilson, J. N.; Erdogan, B.; Bunz, U. H. F. Macromolecules 2003, 36, 7409–7412.
    27.Che, Y.; Yang, X.; Zang, L. Chem. Commun. 2008, 1413.
    28.Tanzi, T. E. et al. Nature Genet. 1993, 5, 344–350.
    29.Vulpe C. , L evington. B., W hitney S. , et al., Nature Genet. 1993, 3, 7– 13.
    30.Li, J.; Guo, Y.; Yao, H.; Lin, Q.; Xie, Y.; Wei, T.; Zhang, Y. Chin. J. Chem. 2013, 31, 271–276.
    31.Wu, J.-S.; Wang, P.-F.; Zhang, X.-H.; Wu, S.-K. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2006, 65, 749–752.
    32.Xu, Y.; Lu, F.; Xu, Z.; Cheng, T.; Qian, X. Sci. China Ser. B Chem. 2009, 52, 771–779.
    33.D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental analysis 5th ed, Harcourt Brace & Co. , 1998.
    34.Joseph R. Lakowicz, Principle of Fluorscence Spectroscopy, 3rd Ed. Springer, Vol. 1. 2006.
    35.Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
    36. D. A. Skoog, D. M. West, F. J. Holler, Stnaley R. Crouch, Fundamentals of Analytical Chemistry, Saunders, 2000, pp. 458-471.
    37.藍婉珊,國立台南大學自然科學教育學系碩士論文 (2006)
    38.T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7058–
    7062.
    39.Chen, S.-H.; Chen, Y. Macromolecules 2005, 38, 53–60.

    無法下載圖示 校內:2018-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE