| 研究生: |
郭修言 Kuo, Hsiu-Yen |
|---|---|
| 論文名稱: |
Thermosynechococcus sp. CL-1應用於混合生活污水與養豬廢水之固碳、氨氮降解以及藻藍蛋白產能影響之研究 Effects of mixed domestic sewage and swine wastewater on the CO2 fixation, ammonia degradation and phycocyanin production by the cultivation of Thermosynechococcus sp. CL-1 |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 藍綠菌 、Thermosynechococcus sp. CL-1 、養豬廢水 、生活污水 、二氧化碳固定 、氨氮去除 、藻藍蛋白 |
| 外文關鍵詞: | cyanobacteria, Thermosynechococcus sp. CL-1, swine wastewater, domestic sewage, CO2 fixation, ammonium removal, phycocyanin |
| 相關次數: | 點閱:31 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球人口成長與都市化快速發展,水資源短缺與廢水污染已成為嚴峻的環境問題。自營營養型微藻(如藍綠菌)提供一項永續的解決方案,能夠利用廢水中的營養成分(如氨鹽、磷酸鹽與微量金屬),同時固定二氧化碳(CO₂),並產生具經濟價值的副產物,如藻藍蛋白(phycocyanin)。因應肉品需求上升,畜牧業產生了大量富含營養的廢水,若未妥善處理,將對環境構成重大威脅。同樣地,生活污水亦含有大量營養物質。將生活污水與養豬廢水混合處理,不僅可降低毒性、平衡營養比例,亦有助於提升微藻的生長環境。
本研究探討將此類混合廢水作為培養基,用於培養耐熱鹼性的藍綠菌Thermosynechococcus sp. CL-1(TCL-1)。該菌株源自台灣金崙溫泉,具備良好的環境適應性。研究中將養豬廢水分別以去離子水與生活污水進行20倍與25倍稀釋,並添加113.2 mM的溶解性無機碳作為碳源,於平板式光生物反應器(FPBR)中進行培養。初始生物量設為3.0 g/L,氨氮濃度介於50–80 mg/L之間。
本研究評估 TCL-1 在不同稀釋策略下的生物量增長、碳固定能力、氮去除效率與藻藍蛋白產量,藉此驗證結合微藻培養與混合生活污水與養豬廢水處理在資源永續利用上的潛力。研究結果顯示,在以生活污水將養豬廢水稀釋25倍的條件下,TCL-1 的最佳生物量生產力與CO₂固定速率分別達到85.0 ± 12.4 mg/L/h與155.4 mg/L/h。
With global population growth and rapid urbanization, water scarcity and wastewater pollution have become critical environmental concerns. Autotrophic microalgae, such as cyanobacteria, offer a sustainable solution by utilizing nutrients like ammonium, phosphate, and trace metals from wastewater while fixing CO₂ and producing valuable by-products such as phycocyanin.
Swine farming, driven by rising meat demand, generates nutrient-rich wastewater that poses environmental risks if untreated. Similarly, domestic sewage contains significant nutrient loads. Mixing domestic sewage with swine wastewater can reduce toxicity, balance nutrient ratios, and improve conditions for microalgal growth. This study evaluates the potential of using such mixed wastewater as a medium for cultivating Thermosynechococcus sp. CL-1 (TCL-1), a thermotolerant, alkaliphilic cyanobacterium isolated from Chinlun Hot Spring, Taiwan.
Swine wastewater was diluted 20 and 25 times with either DI water or domestic sewage. A carbon source of 113.2 mM dissolved inorganic carbon (DIC) was added, and cultivation was performed in a flat-panel photobioreactor (FPBR). Initial biomass was set at 3.0 g/L, with ammonium concentrations between 50–80 mg/L.
This study evaluates the performance of TCL-1 in terms of biomass growth, carbon sequestration, nitrogen removal, and phycocyanin production under various dilution strategies. The findings aim to demonstrate the potential of coupling microalgal cultivation with mixed domestic and swine wastewater treatment for sustainable resource utilization. The results show that the optimal biomass productivity and CO₂ fixation rate in mixed wastewater cultivation are 85.0 ± 12.4 mg/L/h and 155.4 mg/L/h, respectively, under the condition where swine wastewater was diluted 25 times using domestic sewage.
Aka, R. J. N., Hossain, M., Yuan, Y., Agyekum-Oduro, E., Zhan, Y., Zhu, J., & Wu, S. (2023). Nutrient recovery through struvite precipitation from anaerobically digested poultry wastewater in an air-lift electrolytic reactor: Process modeling and cost analysis. Chemical Engineering Journal, 465, 142825.
Ali, S. S., Al-Tohamy, R., Al-Zahrani, M., Schagerl, M., Kornaros, M., & Sun, J. (2025). Advancements and challenges in microalgal protein production: A sustainable alternative to conventional protein sources. Microbial Cell Factories, 24(1), 61.
Altamira-Algarra, B., Lage, A., Meléndez, A. L., Arnau, M., Gonzalez-Flo, E., & García, J. (2024). Bioplastic production by harnessing cyanobacteria-rich microbiomes for long-term synthesis. Science of The Total Environment, 954, 176136.
Amaro, H. M., Salgado, E. M., Nunes, O. C., Pires, J. C. M., & Esteves, A. F. (2023). Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Journal of Environmental Management, 337, 117678.
Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol, 58(2), 419-435.
Brian, C. (2024). Global Warming: Causes, Impacts, and Mitigation Strategies. INFLUENCE: INTERNATIONAL JOURNAL OF SCIENCE REVIEW, 5(3), 184-190.
Chlipala, G. (2010). Anti-Cancer Compounds from Cultured and Field Collected Cyanobacteria
Chen, N., Zhang, X., Du, Q., Huo, J., Wang, H., Wang, Z., Guo, W., & Ngo, H. H. (2023). Advancements in swine wastewater treatment: Removal mechanisms, influential factors, and optimization strategies. Journal of Water Process Engineering, 54, 103986.
Cheng, H.-H., Narindri, B., Chu, H., & Whang, L.-M. (2020). Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresource Technology, 303, 122861.
Cheng, Y. I., Chou, L., Chiu, Y. F., Hsueh, H. T., Kuo, C. H., & Chu, H. A. (2020). Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium Thermosynechococcus sp. CL-1. Front Microbiol, 11, 82.
Cui, C., Shang, M., Li, Z., & Xiao, J. (2025). Synthetic biology approaches to improve Rubisco carboxylation efficiency in C3 Plants: Direct and Indirect Strategies. Journal of Plant Physiology, 307, 154470.
Domingues, E., Fernandes, E., Gomes, J., & Martins, R. C. (2021). Advanced oxidation processes perspective regarding swine wastewater treatment. Science of The Total Environment, 776, 145958.
Eriksen, N. T. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1-14.
Ferre, M., Moya-Llamas, M. J., Dominguez, E., Ortuño, N., & Prats, D. (2025). Advanced Oxidation Processes and Adsorption Technologies for the Removal of Organic Azo Compounds: UV, H2O2, and GAC. Water, 17(2).
Fitzgerald, G. P., Gerloff, G. C., & Skoog, F. (1952). Studies on Chemicals with Selective Toxicity to Blue-Green Algae. Sewage and Industrial Wastes, 24(7), 888-896.
Gattuso, J.-P., Mach, K. J., & Morgan, G. (2013). Ocean acidification and its impacts: an expert survey. Climatic Change, 117(4), 725-738.
Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N., & Aroua, M. K. (2016). An overview of biological processes and their potential for CO2 capture. Journal of Environmental Management, 183, 41-58.
Gurreri, L., Calanni Rindina, M., Luciano, A., Lima, S., Scargiali, F., Fino, D., & Mancini, G. (2023). Environmental sustainability of microalgae-based production systems: Roadmap and challenges towards the industrial implementation. Sustainable Chemistry and Pharmacy, 35, 101191.
Hsueh, H. T., Chu H Fau - Chang, C. C., & Chang, C. C. (2007a). Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environ Sci Technol, 41(0013-936X (Print)), 1909-1914.
Hsueh, H. T., Chu, H., & Yu, S. T. (2007b). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66(5), 878-886.
Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M. A., & Mojica, L. (2019). Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42, 101600.
Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3), 261-266.
Kalita, N., & Baruah, P. P. (2023). Cyanobacteria as a potent platform for heavy metals biosorption: Uptake, responses and removal mechanisms. Journal of Hazardous Materials Advances, 11, 100349.
Kanna Dasan, Y., Lam, M. K., Chai, Y. H., Lim, J. W., Ho, Y. C., Tan, I. S., Lau, S. Y., Show, P. L., & Lee, K. T. (2023). Unlocking the potential of microalgae bio-factories for carbon dioxide mitigation: A comprehensive exploration of recent advances, key challenges, and energy-economic insights. Bioresource Technology, 380, 129094.
Kumar, A., Acharya, P., & Jaiman, V. (2022). Third-Generation Hybrid Technology for Algal Biomass Production, Wastewater Treatment, and Greenhouse Gas Mitigation. In S. Arora, A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Innovations in Environmental Biotechnology (pp. 227-263). Springer Nature Singapore.
Kumar, V., Bera, T., Roy, S., Vuong, P., Jana, C., Sarkar, D. J., Devi, M. S., Jana, A. K., Rout, A. K., Kaur, P., Das, B. K., & Behera, B. K. (2023). Investigating bio-remediation capabilities of a constructed wetland through spatial successional study of the sediment microbiome. npj Clean Water, 6(1), 8.
Kuo, C.-M., Sun, Y.-L., Lin, C.-H., Lin, C.-H., Wu, H.-T., & Lin, C.-S. (2021). Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. Sustainability, 13(23).
Laroche, C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. LID - 10.3390/md20050336 [doi] LID - 336. (1660-3397 (Electronic)).
Li, L., Lollar, B. S., Li, H., Wortmann, U. G., & Lacrampe-Couloume, G. (2012). Ammonium stability and nitrogen isotope fractionations for NH4+–NH3(aq)–NH3(gas) systems at 20–70°C and pH of 2–13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochimica et Cosmochimica Acta, 84, 280-296.
Liu, Y., Dong, Q., & Shi, H. (2015). Distribution and population structure characteristics of microorganisms in urban sewage system. Applied Microbiology and Biotechnology, 99(18), 7723-7734.
Lauceri, R., Chini Zittelli, G., & Torzillo, G. (2019). A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Research, 44, 101685.
Mao, M., Han, G., Zhao, Y., Xu, X., & Zhao, Y. (2024). A review of phycocyanin: Production, extraction, stability and food applications. International Journal of Biological Macromolecules, 280, 135860.
Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88(10), 3389-3401.
Mehdizadeh Allaf, M., & Peerhossaini, H. (2022). Cyanobacteria: Model Microorganisms and Beyond. Microorganisms, 10(4).
Meng, X., Jin, M., Feng, Q., Sha, A., Bai, S., & Zhao, X. (2023). Resource and Energy Utilization of Swine Wastewater Treatment: Recent Progress and Future Directions. Separations, 10(12).
Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of The Total Environment, 752, 142168.
Montaño San Agustin, D., Orta Ledesma, M. T., Monje Ramírez, I., Yáñez Noguez, I., Luna Pabello, V. M., & Velasquez-Orta, S. B. (2022). A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater. Renewable Energy, 181, 592-603.
Noreña-Caro, D., & Benton, M. G. (2018). Cyanobacteria as photoautotrophic biofactories of high-value chemicals. Journal of CO2 Utilization, 28, 335-366.
Nagarajan, D., Kusmayadi, A., Yen, H.-W., Dong, C.-D., Lee, D.-J., & Chang, J.-S. (2019). Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 289, 121718.
Narindri Rara Winayu, B., Ho, J.-Y., Hsueh, H.-T., & Chu, H. (2025). Multifunctional Thermosynechococcus sp. CL-1 cultivation in swine wastewater for nutrients utilization, CO2 fixation, and C-phycocyanin production. Journal of the Taiwan Institute of Chemical Engineers, 166, 105046.
Nawaz, T., Joshi, N., Nelson, D., Saud, S., Abdelsalam, N. R., Abdelhamid, M. M. A., Jaremko, M., Rahman, T. U., & Fahad, S. (2024). Harnessing the potential of nitrogen-fixing cyanobacteria: A rich bio-resource for sustainable soil fertility and enhanced crop productivity. Environmental Technology & Innovation, 36, 103886.
Nicholls, R. J., & Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones. Science, 328(5985), 1517-1520.
Nelson, N. (2011). Photosystems and global effects of oxygenic photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8), 856-863.
Nikolova, K., Petkova, N., Mihaylova, D., Gentscheva, G., Gavrailov, G., Pehlivanov, I., & Andonova, V. (2024). Extraction of Phycocyanin and Chlorophyll from Spirulina by “Green Methods”. Separations, 11(2).
Patel, A., Mishra, S., Pawar, R., & Ghosh, P. K. (2005). Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expression and Purification, 40(2), 248-255.
Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25.
Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82, 189-198.
Qiang, X., Wang, L., Niu, J., Gong, X., & Wang, G. (2021). Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review. International Journal of Biological Macromolecules, 193, 1910-1917.
Rai, P., Pathania, R., Bhagat, N., Bongirwar, R., Shukla, P., & Srivastava, S. (2025). Current insights into molecular mechanisms of environmental stress tolerance in Cyanobacteria. World Journal of Microbiology and Biotechnology, 41(2), 53.
Srivastava, A. K., Bhargava, P., Kumar, A., Rai, L. C., & Neilan, B. A. (2009). Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Syst, 5(1746-1448 (Electronic)), 4.
Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. Sustainability, 13(2).
Salehizadeh, H., Yan, N., & Farnood, R. (2020). Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal, 390, 124584.
Singh, U. B., & Ahluwalia, A. S. (2013). Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change, 18(1), 73-95.
Soliman, T. N., Negm El-Dein, A., Abd Al-Daim, S., Allayeh, A., Awad, H., & Flefil, N. S. (2024). Characterization of C-phycocyanin antioxidant, anti-inflammatory, anti-tumour, and anti-HCoV-229E activities and encapsulation for implementation in an innovative functional yogurt. Heliyon, 10(11).
Su, Y. (2021). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of The Total Environment, 762, 144590.
Su, C. M., Hsueh, H. T., Tseng, C. M., Ray, D. T., Shen, Y. H., & Chu, H. (2017). Effects of Nutrient Availability on the Biomass Production and CO2 Fixation in a Flat Plate Photobioreactor. Aerosol and Air Quality Research, 17(7), 1887-1897.
Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., & Karube, I. (1992). Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of Biotechnology, 25(3), 261-267.
Tan, X.-B., Zhao, Z.-Y., Gong, H., Jiang, T., Liu, X.-P., Liao, J.-Y., & Zhang, Y.-L. (2024). Growth of Scenedesmus obliquus in anaerobically digested swine wastewater from different cleaning processes for pollutants removal and biomass production. Chemosphere, 352, 141515.
Fitzgerald, G. P., Gerloff, G. C., & Skoog, F. (1952). Studies on Chemicals with Selective Toxicity to Blue-Green Algae. Sewage and Industrial Wastes, 24(7), 888-896.
Srivastava, A. K., Bhargava, P., Kumar, A., Rai, L. C., & Neilan, B. A. (2009). Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Syst, 5(1746-1448 (Electronic)), 4.
Ventura, J.-R. S., Tulipan, J. U., Banawa, A., Umali, K. D. C., & Villanueva, J. A. L. (2024). Advancements and challenges in decentralized wastewater treatment: A comprehensive review. Desalination and Water Treatment, 320, 100830.
Xin, L., Hong-ying, H., Ke, G., & Jia, Y. (2010). Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering, 36(4), 379-381.
Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), 5494-5500.
Xu, X., Gu, X., Wang, Z., Shatner, W., & Wang, Z. (2019). Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews, 110, 65-82.
Zahed, M. A., Movahed, E., Khodayari, A., Zanganeh, S., & Badamaki, M. (2021). Biotechnology for carbon capture and fixation: Critical review and future directions. Journal of Environmental Management, 293, 112830.
Zerveas, S., Mente, M. S., Tsakiri, D., & Kotzabasis, K. (2021). Microalgal photosynthesis induces alkalization of aquatic environment as a result of H+ uptake independently from CO2 concentration – New perspectives for environmental applications. Journal of Environmental Management, 289, 112546.
Zhang, S., Zhang, Z., Dadmohammadi, Y., Li, Y., Jaiswal, A., & Abbaspourrad, A. (2021). Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. Food Chemistry, 344, 128642.
Zhu, Z., Jiang, J., & Fa, Y. (2020). Overcoming the Biological Contamination in Microalgae and Cyanobacteria Mass Cultivations for Photosynthetic Biofuel Production. Molecules, 25(22).