簡易檢索 / 詳目顯示

研究生: 張氏秀貞
Trinh, Truong Thi Tu
論文名稱: 探討阿拉伯芥葉片生長發育時PAP-FIBRILLIN基因族群的表現模式及可能受賀爾蒙和非生物逆境調控途徑
Investigate the expression patterns of PAP-fibrillin family genes and their putative regulatory networks in response to developmental and environmental signals in Arabidopsis
指導教授: 李瑞花
Lee, Ruey-Hua
吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 87
中文關鍵詞: 阿拉伯芥葉綠體葉片老化類囊膜瓦解PAP-fibrillinPlastoglobuli
外文關鍵詞: Arabidopsis thaliana, leaf senescence, thylakoid membrane degradation, PAP-fibrillin, Plastoglobuli
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉片黃化時葉綠體瓦解時,類囊膜的瓦解是最早受破壞的胞器內結構,而且可以觀察到葉綠體內部大量形成plastoglobule且數目隨著瓦解程度而增加,Plastoglobule是單膜結構主要成分為半乳糖酯,並有蛋白質(如PAP-fibrillins)崁鑲在單膜表面上,PAP-fibrillins 被認為扮演穩定plastoglobule的結構型態、新陳代謝物運輸及抵抗逆境功能,為了瞭解發育及環境網絡如何調控PAP-fibrillin族群基因的表現,本研究利用阿拉伯芥為模式植物,探討14個PAP-fibrillin族群基因在葉片發育及老化不同發育時期的表現模式及是否受不同賀爾蒙及非生物逆境的調控,大部分這些基因在不同葉片發育及黃化時期有雙峰表現模式,包括早期的葉片發育及葉片開始黃化前期。目前使用的賀爾蒙及非生物逆境處理的阿拉伯芥植株的葉片,只有少數基因受部分處理方法有改變表現模式。從promoter序列分析,我們初步有分離40個引子基因可能扮演調控PAP-fibrillin族群基因表現的腳色,其中有分離出17個葉片老化相關的引子基因,針對目前分析結果,針對 PAP-fibrillin族群基因表現的調控網絡進行討論

    Degradation of the thylakoid membrane is the first step for chloroplast breakdown during leaf senescence and is masked by increase number and size of plastoglobuli. Plastoglobuli consist of an outer galactolipid monolayer studded with PAP-fibrillin on the surface of plastoglobuli. PAP-fibrillin suggested playing roles in maintaining the structural stability of plastoglobuli, metabolite transport and against biotic and abiotic stresses. We are interested in dissecting the regulatory network of PAP-fibrillin genes in response to developmental and environmental signals during leaf senescence in Arabidopsis. We have analyzed expression profiles of 14 PAP-fibrillin genes during different stages of leaf development and senescence. Most of these genes were induced to high levels of expression in early leaf development and then reduced to low levels as leaf developed to maturity. These genes then again induced to high levels during onset of leaf senescence. We have also analyzed the expression profiles of these genes in response to different abiotic stresses and hormonal treatments. Promoter analysis for these family genes, we have identified 40 putative transcription factors and 17 of these were induced during senescence. The putative regulatory networks of PAP-fibrillin gene family in response to developmental and environmental signals are discussed.

    CONTENTS ABSTRACT ...... I 中文摘要 ..... II ACKNOWLEDGEMENTS ..... III ABBREVIATIONS ...... IV CONTENTS ...... V 1. INTRODUCTION ...... 1 1.1. Structure and function of chloroplast .... 1 1.1.1. Structure of chloroplast .... 1 1.1.2. Composition of thylakoid membrane ... 2 1.1.3. Structural function of thylakoid membrane .... 3 1.2. Chloroplast degradation during leaf senescence ... 4 1.2.1. Cellular view .... 5 1.2.2. Degradation of thylakoid membrane .... 6 1.3. Formation of plastioglobules is a hallmark of chloroplast degradation .. 7 1.3.1. Structure and composition of plastioglobules .... 8 1.3.2. Function of plastioglobuli ..... 9 1.3.3. PAPs/fibrillins ..... 10 1.4. Regulation and signaling during leaf senescence in response to developmental and environmental signals ..... 10 1.4.1. Senescence-associated genes .... 10 1.4.2. Hormonal regulation of leaf senescence ... 12 1.5. Research aim ...... 12 2. MATERIALS AND METHODS .... 13 2.1. Growth and maintenance of Arabidopsis plant .... 13 2.2. Abiotic and hormone treatments .... 14 2.3. Total RNA extraction and quantitation .... 14 2.4. Non-denaturing RNA and DNA agarose gel electrophoresis .. 15 2.5. Total chlorophyll extraction and quantitation .... 16 2.6. Total protein extraction and quantitation ... 16 2.7. Retrieval of PAP-fibrillin cDNA, gDNA, promoter and amino acid sequences and phylogenetic analysis .... 17 2.8. Promoter analysis .... 17 2.9. Semi-Quantitative Reverse Transcription-PCR (RT-PCR) .. 17 3. RESULTS ..... 18 3.1. DNA and amino acid sequence analysis ... 18 3.2. Protein and chlorophyll levels during different stages of leaf growth and senescence...... 19 3.3. Expression profiles of PAPs/fibrillins genes during different stages of leaf growth and senescence. ..... 19 3.4. Expression profiles of putative transcription factors for PAP-fibrillin genes during different stages of leaf growth and senescence... 20 3.5. Expression of PAP-fibrillin genes in response to hormonal and abiotic stress signals . 21 4. DISCUSSION ..... 21 5. CONCLUSION ...... 26 LIST OF TABLES AND FIGURES ..... 28 Table 1. Hormone and abiotic treatments for Arabidopsis thaliana ... 29 Table 2. Primers used for studying expression levels of 14 PAP-fibrillin genes by RT-PCR...... 30 Table 3. Primers used for studying expression levels of 40 putative transcription factors having corresponding binding sites on promoters of PAP-fibrillin genes by RT-PCR. 31 Table 4. PAP-fibrillin family genes in Arabidopsis. ... 33 Table 5. Putative transcription factors for PAP-fibrillin family genes ... 34 Table 6. Summary of PAP/fibrillin genes expression during early stage of leaf development and/or onset of leaf senescence .... 36 Table 7. Summary of PAP/fibrillin genes expression patterms modulated by hormone and abiotic stress treatments .... 37 Figure 1. Structures of 14 PAP-fibrillin genes in Arabidopsis thaliana. .. 38 Figure 2. Conserved motifs in PAP-fibrillin family proteins in Arabidopsis. .. 39 Figure 3. Amino acid sequence alignment of 14 Arabidopsis PAPs/fibrillin proteins. .. 40 Figure 4. Phylogenetic analysis of Arabidopsis PAP-fibrillin proteins. ... 41 Figure 5. Phylogenetic analysis of the PAP-fibrillin family proteins in different plants .. 42 Figure 6. Different stages of rosette leaf growth and senescence. .. 43 Figure 7. Total protein contents in different stages of rosette leaf growth and senescence. . 44 Figure 8. Total chlorophyll contents in different stages of rosette leaf growth and senescence. ..... 45 Figure 9. Expression patterns of PAP-fibrillin genes detected by RT-PCR. . 46 The expression patterns are divided into 4 categories during different stages of leaf growth and senescence ...... 46 Figure 10. Expression patterns of 40 transcription factors (TFs) detected by RT-PCR. These TFs having putative binding sites on the promoters of PAP-fibrillin genes. .. 51 Figure 11. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of IAA (100 M) treatments. (b) Total RNA electrophoresis (1g/lane); (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR .... 52 Figure 12. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of BA (100M) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 53 Figure 13. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of GA (50M) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes by RT-PCR. ..... 54 Figure 14. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of SA (100M) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 55 Figure 15. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of MeJA (100M) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR.... 56 Figure 16. (a) The visible phenotype of non-treated (C) and treated plants after 0-9 days of ABA (100M) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes by RT- PCR. .... 57 Figure 17. (a) The visible phenotype of non-treated and treated plants after 0-9 days of 10M Propionyl brassinolide (BR) treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. .. 58 Figure 18. (a) The visible phenotype of non-treated and treated plants after 0-7 days of 100mM H2O2 treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 59 Figure 19. (a) The visible phenotype of non-treated and treated plants after 0-14 days of 150mM NaCl treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 60 Figure 20. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of 150mM Sorbitol treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR.... 61 Figure 21. (a) The visible phenotype of non-treated (C) and treated plants after 0-7 days of Hypoxia treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 62 Figure 22. (a) The visible phenotype of non-treated (C) and treated plants after 0-10 days of drought treatment; (b) Total RNA electrophoresis 1g/lane; (c) Pot’s weigh after dehydration for five-repeat (column) and mean (line); (d) Expression patterns of PAP-fibrillin genes by RT-PCR. ..... 63 Figure 23. (a) The visible phenotype of non-treated (C) and treated plants after 0-14 days of dark treatment ; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 64 Figure 24. (a) The visible phenotype of non-treated and treated plants after 0-14 days of high light treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 65 Figure 25. (a) The visible phenotype of non-treated (C) and treated plants after 0-14 days of cold treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 66 Figure 26. (a) The visible phenotype of non-treated (C) and treated plants after 0-3 days of heat treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 67 Figure 27. (a) The visible phenotype of non-treated (C) and treated plants after 0-10 days of wounding treatment; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 68 Figure 28. (a) The visible phenotype of non-treated and treated plants after 0-24 hours of UV-B treatment/0-24h; (b) Total RNA electrophoresis 1g/lane; (c) Expression patterns of PAP-fibrillin genes detected by RT-PCR. ... 69 REFERENCES ..... 70 APPENDIXES ...... 81 Appendix 1. Expression profiles in 14-PAP-fibrillin genes for triplicate .. 82 Appendix 2. Expression profile for 40-putative PAP-fibrillin transcription factors for triplicate ...... 83

    Andersson, B., & Anderson, J. M. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 593(2), 427-440.
    Andersson, M. X., & Dörmann, P. (2009). Chloroplast membrane lipid biosynthesis and transport the Chloroplast (pp. 125-158): Springer.
    Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Björkbacka, H., Birve, S. J., . . . Lundeberg, J. (2003). Gene expression in autumn leaves. Plant Physiology, 131(2), 430-442.
    Bitanihirwe, B. K., & Woo, T.-U. W. (2011). Oxidative stress in schizophrenia: an integrated approach. Neuroscience & Biobehavioral Reviews, 35(3), 878-893.
    Block, M. A., Dorne, A.-J., Joyard, J., & Douce, R. (1983). Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. Journal of Biological Chemistry, 258(21), 13281-13286.
    Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. Journal of experimental botany, 48(2), 181-199.
    Conconi, A., Smerdon, M. J., Howe, G. A., & Ryan, C. A. (1996). The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation.
    Chang, H., Jones, M. L., Banowetz, G. M., & Clark, D. G. (2003). Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 132(4), 2174-2183.
    D'Souza, S. E., Ginsberg, M. H., & Plow, E. F. (1991). Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends in Biochemical Sciences, 16, 246-250.
    Daum, B., Nicastro, D., Austin, J., McIntosh, J. R., & Kühlbrandt, W. (2010). Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. The Plant Cell Online, 22(4), 1299-1312.
    Dekker, J. P., & Boekema, E. J. (2005). Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(1), 12-39.
    Deruère, J., Römer, S., d'Harlingue, A., Backhaus, R. A., Kuntz, M., & Camara, B. (1994). Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. The Plant Cell Online, 6(1), 119-133.
    Elkehal, R., Becker, T., Sommer, M. S., Königer, M., & Schleiff, E. (2012). Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(5), 1033-1040.
    Fleet, C. M., & Sun, T.-p. (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology , 8(1), 77-85.
    Fletcher, R., & OSBORNE, D. J. (1965). Regulation of protein and nucleic acid synthesis by gibberellin during leaf senescence.
    Fracheboud, Y., Luquez, V., Björkén, L., Sjödin, A., Tuominen, H., & Jansson, S. (2009). The control of autumn senescence in European aspen. Plant Physiology, 149(4), 1982-1991.
    Galetskiy, D., Susnea, I., Reiser, V., Adamska, I., & Przybylski, M. (2008). Structure and dynamics of photosystem II light-harvesting complex revealed by high-resolution FTICR mass spectrometric proteome analysis. Journal of the American Society for Mass Spectrometry, 19(7), 1004-1013.
    Gan, S. (2003). Mitotic and postmitotic senescence in plants. Science's SAGE KE, 2003(38), 7.
    Gan, S. (2010). The hormonal regulation of senescence. Plant Hormones, 597-617.
    Gan, S., & Amasino, R. M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 113(2), 313.
    Gepstein, S., Sabehi, G., Carp, M. J., Hajouj, T., Nesher, M. F. O., Yariv, I., . . . Bassani, M. (2003). Large‐scale identification of leaf senescence‐associated genes. The Plant Journal, 36(5), 629-642.
    Grbić, V., & Bleecker, A. B. (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis. The Plant Journal, 8(4), 595-602.
    Groppa, M. a. D., Tomaro, M. a. L., & Benavides, M. a. P. (2001). Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science, 161(3), 481-488.
    Gillet, B., Beyly, A., Peltier, G., & Rey, P. (1998). Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit inSolanum tuberosumL. plants, and regulation ofCDSP 34expression by ABA and high illumination. The Plant Journal, 16(2), 257-262.
    Harms, K., Atzorn, R., Brash, A., Kuhn, H., Wasternack, C., Willmitzer, L., & Pena-Cortes, H. (1995). Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. The Plant Cell Online, 7(10), 1645-1654.
    Harwood, J. L., & Russell, N. J. (1984). Lipids in plants and microbes: George Allen & Unwin.
    He, Y., & Gan, S. (2001). Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Molecular Biology, 47(5), 595-605.
    Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., & Pena-Cortes, H. (1996). Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiology, 112(2), 853-860.
    Hoch, W. A., Zeldin, E. L., & McCown, B. H. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology, 21(1), 1-8.
    Hopkins, M., Taylor, C., Liu, Z., Ma, F., McNamara, L., Wang, T. W., & Thompson, J. E. (2007). Regulation and execution of molecular disassembly and catabolism during senescence. New Phytologist, 175(2), 201-214.
    Inaba, T., & Ito-Inaba, Y. (2010). Versatile roles of plastids in plant growth and development. Plant and Cell Physiology, 51(11), 1847-1853.
    Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., . . . Mae, T. (2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology, 148(1), 142-155.
    Ishida, H., Yoshimoto, K., Reisen, D., Makino, A., Ohsumi, Y., Hanson, M. R., & Mae, T. (2008). Visualization of rubisco-containing bodies derived from chloroplasts in living cells of arabidopsis Photosynthesis. Energy from the Sun (pp. 1207-1210): Springer.
    Jiao, B.-B., Wang, J.-J., Zhu, X.-D., Zeng, L.-J., Li, Q., & He, Z.-H. (2012). A Novel Protein RLS1 with NB–ARM Domains Is Involved in Chloroplast Degradation during Leaf Senescence in Rice. Molecular plant, 5(1), 205-217.
    Jibran, R., Hunter, D. A., & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82(6), 547-561.
    Johnson, P. R., & Ecker, J. R. (1998). The ethylene gas signal transduction pathway: a molecular perspective. Annual review of genetics, 32(1), 227-254.
    Jones, A. M., Bennett, M. H., Mansfield, J. W., & Grant, M. (2006). Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics, 6(14), 4155-4165.
    Jones, M. R. (2007). Lipids in photosynthetic reaction centres: structural roles and functional holes. Progress in lipid research, 46(1), 56-87.
    Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., & Krauß, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411(6840), 909-917.
    Joshi, P., Biswal, B., & Biswal, U. (1991). Effect of UV-A on aging of wheat leaves and role of phytochrome. Environmental and experimental botany, 31(3), 267-276.
    Jung, H.-S., & Chory, J. (2010). Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiology, 152(2), 453-459.
    Keskitalo, J., Bergquist, G., Gardeström, P., & Jansson, S. (2005). A cellular timetable of autumn senescence. Plant Physiology, 139(4), 1635-1648.
    Krupinska, K. (2006). Fate and activities of plastids during leaf senescence The Structure and Function of Plastids (pp. 433-449): Springer.
    Langenkämper, G., Manac'h, N., Broin, M., Cuiné, S., Becuwe, N., Kuntz, M., & Rey, P. (2001). Accumulation of plastid lipid‐associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. Journal of experimental botany, 52(360), 1545-1554.
    Lee, R. H., & Chen, S. C. G. (2002). Programmed cell death during rice leaf senescence is nonapoptotic. New Phytologist, 155(1), 25-32.
    Lee, R. H., Hsu, J. H., Huang, H. J., Lo, S. F., & Grace Chen, S. C. (2009). Alkaline α‐galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytologist, 184(3), 596-606.
    Lichtenthaler, H. (1968). Plastoglobuli and the fine structure of plastids. Endeavour, 27, 144-149.
    Lim, P. O., Kim, H. J., & Gil Nam, H. (2007). Leaf senescence. Annu. Rev. Plant Biol., 58, 115-136.
    Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., . . . Chang, W. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 428(6980), 287-292.
    Loll, B., Kern, J., Saenger, W., Zouni, A., & Biesiadka, J. (2007). Lipids in photosystem II: interactions with protein and cofactors. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 509-519.
    López-Juez, E., & Hills, A. (2011). Screening or Selection for Chloroplast Biogenesis Mutants of Arabidopsis, Following Chemical or Insertional Mutagenesis Chloroplast Research in Arabidopsis (pp. 3-18): Springer.
    Lu, B., & Benning, C. (2009). A 25-amino acid sequence of the Arabidopsis TGD2 protein is sufficient for specific binding of phosphatidic acid. Journal of Biological Chemistry, jbc. M109. 016014.
    Lundquist, P. K., Poliakov, A., Giacomelli, L., Friso, G., Appel, M., McQuinn, R. P., . . . Sun, Q. (2013). Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. The Plant Cell Online, 25(5), 1818-1839.
    Marler, T., & Muniappan, R. (2006). Pests of Cycas micronesica leaf, stem, and male reproductive tissues with notes on current threat status. MICRONESICA-AGANA-, 39(1), 1.
    Martínez, D., Costa, M., & Guiamet, J. (2008). Senescence‐associated degradation of chloroplast proteins inside and outside the organelle. Plant Biology, 10(s1), 15-22.
    Martínez, D. E., Costa, M. L., Gomez, F. M., Otegui, M. S., & Guiamet, J. J. (2008). ‘Senescence‐associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal, 56(2), 196-206.
    Miller, J. D., Arteca, R. N., & Pell, E. J. (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiology, 120(4), 1015-1024.
    Mizusawa, N., & Wada, H. (2012). The role of lipids in photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 194-208.
    Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203-216.
    Mustárdy, L., Buttle, K., Steinbach, G., & Garab, G. (2008). The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. The Plant Cell Online, 20(10), 2552-2557.
    Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88-95.
    Niwa, Y., Kato, T., Tabata, S., Seki, M., Kobayashi, M., Shinozaki, K., & Moriyasu, Y. (2004). Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma, 223(2-4), 229-232.
    Noh, Y.-S., & Amasino, R. M. (1999). Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Molecular Biology, 41(2), 181-194.
    Noodén, L. D. (2003). Plant cell death processes: Academic Press.
    Nußberger, S., Dörr, K., Wang, D. N., & Kühlbrandt, W. (1993). Lipid-protein interactions in crystals of plant light-harvesting complex. Journal of molecular biology, 234(2), 347-356.
    Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., . . . Hirai, M. Y. (2009). A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. The Plant Cell Online, 21(3), 892-909.
    Otegui, M. S., Noh, Y. S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence‐associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal, 41(6), 831-844.
    Park, S.-J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., . . . Brown, A. L. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 148(3), 421-433.
    Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R., & Dörmann, P. (2002). Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proceedings of the National Academy of Sciences, 99(19), 12495-12500.
    Prins, A., Van Heerden, P. D., Olmos, E., Kunert, K. J., & Foyer, C. H. (2008). Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. Journal of experimental botany, 59(7), 1935-1950.
    Pruvot, G., Massimino, J., Peltier, G., & Rey, P. (1996). Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought‐induced proteins in Solanum tuberosum. Physiologia Plantarum, 97(1), 123-131.
    Quirino, B. F., Noh, Y.-S., Himelblau, E., & Amasino, R. M. (2000). Molecular aspects of leaf senescence. Trends in plant science, 5(7), 278-282.
    Quirino, B. F., Normanly, J., & Amasino, R. M. (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology, 40(2), 267-278.
    Reich, P. B., & Lassoie, J. P. (1985). Influence of low concentrations of ozone on growth, biomass partitioning and leaf senescence in young hybrid poplar plants. Environmental Pollution Series A, Ecological and Biological, 39(1), 39-51.
    Reinbothe, C., Springer, A., Samol, I., & Reinbothe, S. (2009). Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS journal, 276(17), 4666-4681.
    Reinsberg, D., Booth, P. J., Jegerschöld, C., Khoo, B. J., & Paulsen, H. (2000). Folding, assembly, and stability of the major light-harvesting complex of higher plants, LHCII, in the presence of native lipids. Biochemistry, 39(46), 14305-14313.
    Ribas, A., Penuelas, J., Elvira, S., & Gimeno, B. S. (2005). Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution, 134(2), 291-300.
    Robatzek, S., & Somssich, I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development, 16(9), 1139-1149.
    Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Dawood, A., Wilhelm, C., Strzałka, K., & Goss, R. (2011). Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(3), 326-335.
    Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C., Strzałka, K., & Goss, R. (2010). The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(3), 414-424.
    Schattat, M., Barton, K., Baudisch, B., Klösgen, R. B., & Mathur, J. (2011). Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiology, 155(4), 1667-1677.
    Schippers, J. H., Jing, H.-C., Hille, J., & Dijkwel, P. P. (2007). Developmental and hormonal control of leaf senescence. Senescence processes in plants, 145-170.
    Selstam, E., & Campbell, D. (1996). Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Archives of microbiology, 166(2), 132-135.
    Siegenthaler, P. A., & Murata, N. (1998). Lipids in Photosynthesis: Structure, Function, and Genetics: Springer.
    Singh, D. K., Maximova, S. N., Jensen, P. J., Lehman, B. L., Ngugi, H. K., & McNellis, T. W. (2010). FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiology, 154(3), 1281-1293.
    Solovchenko, A., & Merzlyak, M. (2008). Screening of visible and UV radiation as a photoprotective mechanism in plants. Russian Journal of Plant Physiology, 55(6), 719-737.
    Staehelin, L. (1986). Chloroplast structure and supramolecular organization of photosynthetic membranes Photosynthesis III (pp. 1-84): Springer.
    Steyn, W., Wand, S., Holcroft, D., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155(3), 349-361.
    Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., . . . Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85(2), 171-182.
    Szilágyi, A., Selstam, E., & Åkerlund, H.-E. (2008). Laurdan fluorescence spectroscopy in the thylakoid bilayer: The effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(1), 348-355.
    Thompson, J., Legge, R., & Barber, R. (1987). Tansley review No. 8. the role of free radicals in senescence and wounding. New Phytologist, 317-344.
    Trosper, T., & Sauer, K. (1968). Chlorophyll< i> a</i> interactions with chloroplast lipids in vitro. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 162(1), 97-105.
    van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flügge, U.-I., & Kunze, R. (2006). Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiology, 141(2), 776-792.
    Weaver, L. M., Himelblau, E., & Amasino, R. M. (1997). Leaf senescence: gene expression and regulation Genetic engineering (pp. 215-234): Springer.
    Webb, M. S., & Green, B. R. (1991). Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1060(2), 133-158.
    Yang, Y., Sulpice, R., Himmelbach, A., Meinhard, M., Christmann, A., & Grill, E. (2006). Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences, 103(15), 6061-6066.
    Youssef, A., Laizet, Y. h., Block, M. A., Maréchal, E., Alcaraz, J. P., Larson, T. R., . . . Kuntz, M. (2010). Plant lipid‐associated fibrillin proteins condition jasmonate production under photosynthetic stress. The Plant Journal, 61(3), 436-445.
    Zacarias, L., & Reid, M. S. (1990). Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiologia Plantarum, 80(4), 549-554.
    Zeevaart, J., & Creelman, R. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and Plant Molecular Biology, 39(1), 439-473.
    Zhu, Y.-X., & Davies, P. J. (1997). The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiology, 113(2), 631-637.

    下載圖示 校內:2016-02-09公開
    校外:2016-02-09公開
    QR CODE