| 研究生: |
何承翰 Ho, Cheng-Han |
|---|---|
| 論文名稱: |
以CCSDS為基礎之近乎無失真太空影像演算法 A Near-lossless Compression Method Based on CCSDS for Satellite Images |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 近乎無失真 |
| 外文關鍵詞: | near-lossless, CCSDS |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前現有的太空影像壓縮標準CCSDS所能提供的服務有限,僅有固定倍率的失真或無失真壓縮,在本論文中,我們提出了一個近乎無失真的帶狀衛星影像壓縮法,在不改變原本太空影像壓縮標準CCSDS的情況下,我們加了前處理量化器,先改變了原影像的熵,再將量化後的影像用無失真CCSDS壓縮,為了確保經壓縮過後的影像都能維持在視覺上的近乎無失真,解碼後的影像與原影像的誤差值必須控制在±δ以下,所提出的編碼使用固定的記憶體,且其壓縮後的結果都能呈現近乎無失真的影像品質。
For compression in space data, there is a standard called Consultative Committee for Space Data System (CCSDS) [1]. The original CCSDS only provides users to select the bit rate of compression, whether lossless or lossy. In this thesis, we perform a near-lossless strip-based satellite image compression method. Without modifying the core of CCSDS, we add a pre-quantizer in order to reduce the entropy of an image in spatial domain and then fed it into CCSDS as an input in lossless mode. The difference between decoded and original images is bounded in ±δ to make sure the output images are visually near-lossless. Experimental results show that our proposed method compresses with limited memory and the compression results still retain near-lossless.
[1] E. Nasr-Esfahani1, S. Samavi1, N. Karimi1, S. Shirani2, “Near Lossless Image Compression By Local Packing Of Histogram. “ IEEE ICASSP 2008
[2] E. Nasr-Esfahani1, S. Samavi1, N. Karimi1, S. Shirani2, “Near-Lossless Image Compression Based On Maximization Of Run Length Sequences“ IEEE ICASSP 2007
[3] Hao Hu, “A study of CALIC”, UMBC ENEE master scholar paper [Fall 2004].
[4] Image Data Compression. Recommendation for Space Data System Standards, CCSDS 122.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, November 2005.
[5] Jong-Sen Lee. “The loco-i lossless image compression algorithm : Principles and standardization into jpeg-ls”. IEEE Transaction on Image Processing, 16:1309-1324, August 2000.
[6] Zhi-Hu Liang, Xiao-Ning Zhang, Chun-Liang Liu, and Xing-Long Ding, “Image-based Dynamic Subfield Coding for Improving Gray Scale Smooth in Color PDPs “ IEEE 2009
[7] K. Ligang, M.W. Marcellin, “Near-Lossless Image Compression: Minimum-Entropy, Constrained-Error DPCM,” IEEE Tran. Image Proc., Vol. 7, no. 2, pp. 225 - 228, 1998.
[8] P.K. Meher, T. Srikanthan, J. Gupta, H. K. Agarwal, “Near-Lossless Image Compression Using Lossless Hartley Like Transform, ” in Proc. ICICS-PCM, pp. 213- 217, 2003.
[9] Seling Tiecht “The Visual Discrimination of Intensity and the Weber-Fechner Law “ IEEE 1942
[10] Fernando García-Vílchez and Joan Serra-Sagristà, “Extending the CCSDS Recommendation for Image Data Compression for Remote Sensing Scenarios “IEEE Transaction on Geoscience and Remote Sensing, 2009
[11] S.,Yea, W.A., Pearlman, “ A Wavelet-Based Two-Stage Near-Lossless Coder,” IEEE Tran. Image Proc., Vol. 15, Issue 11 , pp.3488 - 3500, 2006.