| 研究生: |
廖羿婷 Liao, Yi-Ting |
|---|---|
| 論文名稱: |
市區公車碳足跡生命週期評估─以台南市市區公車2路為例 Life Cycle Assessment of Carbon Footprint in Buses-A Case Study of Bus Route NO.2 in Tainan City |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 生命週期評估法(LCA) 、碳足跡(CFP) 、替代能源公車 、ISO/TS 14067 |
| 外文關鍵詞: | Lifecycle assessment (LCA), Carbon Footprint (CFP), Alternative bus, ISO/TS 14067 |
| 相關次數: | 點閱:105 下載:33 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來的人類活動,加劇了全球溫室效應及其引發之氣候變遷與災難以及食物和水源的短缺,人類活動當中又以運輸活動為溫室氣體排放主要來源之一。世界各地領袖及國際組織針對溫室效應及氣候變遷,紛紛提出減碳目標及策略,台灣交通部運輸研究所針對市區公車之減碳目標訂定為:「市區公車全面汰換舊型公車為替代能源公車」。因此本研究探討台南市客運量最大的市區公車路線2號公車之實際生命週期碳足跡,及若使用其他替代能源公車行駛時,其生命週期碳足跡及環境效益。以生命週期的觀點來分析不同能源公車在原料製造階段、運輸服務階段及廢棄物處理階段等各環節對於環境面之影響。
本文碳足跡評估方法依照國際標準ISO/TS 14067 為主要碳足跡評估架構,且參照另一國際標準PAS2050中的五大計算步驟做為評估碳足跡之流程,並服從CFP-PCR規範。本文以實際案例─台南市2號市區公車車輛為標的進行碳足跡評估,除收集一整年的直接活動數據及其他所需二手數據,以建立碳排放與碳足跡模型並繪製製程地圖外,並進行碳足跡數據品質分析。
公車碳足跡計算結果,以延人公里為單位,由大至小排序分別為:液化天然氣公車63.14 gCO2e/pkm、傳統柴油公車54.6 gCO2e/pkm、液化石油氣公車47.4 gCO2e/pkm、充電式純電動公車37.82 gCO2e/pkm及氫燃料電池公車29.17 gCO2e/pkm。分析各能源公車於各生命週期階段之碳排放熱點,發現傳統柴油公車、液化天然氣公車及液化石油氣公車,於運輸階段為主要碳排放生命週期階段,氫燃料電池公車及充電式純電動公車,則以燃料製造階段為主要碳排放生命週期階段。
研究發現利用氫燃料電池公車取代傳統柴油公車,為最具環境效益之方法,若在2025年汰換全部台南市2號市區公車共32輛公車為氫燃料電池公車,預計每年可減少1,244.08 tonCO2e;若在2025年汰換全台灣市區公車共15,663輛車為氫燃料電池公車,預計可減少227,832.39 tonCO2e。因此本研究建議,可使用最具環境效益之氫燃料電池公車,作為未來國家取代傳統柴油公車主要之替代能源公車。
One of the Taiwan's transportation policies to reduce CO2 emission is to replace all traditional diesel fuel urban buses with alternative energy buses. This paper uses a case study of bus route NO.2 in Tainan city and follow the international standard ISO/TS 14067 and PAS2050 to measure different energy buses carbon footprints . The purpose is to measure the environmental benefits of the alternative energy buses. The results of the calculation of the bus’ carbon footprints from large to less are LNG buses 63.14 g CO2e / pkm, traditional diesel buses 54.6 g CO2e / pkm, liquefied petroleum gas buses 47.4 g CO2e / pkm, Plug-in electric buses 37.82 g CO2e / pkm and hydrogen fuel cell bus 29.17 g CO2e / pkm, respectively. This paper found that using hydrogen fuel cell buses to replace traditional diesel buses have the most environmental benefits.Therefore, this study suggested that the government can use the most environmentally friendly hydrogen fuel cell bus as the future of the country's major alternative energy bus.
Aggarwal, P., & Jain, S. (2016). Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production, 128, 48-61.
Ally, J., & Pryor, T. (2007). Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems. Journal of Power Sources, 170(2), 401-411.
BSI. (2008). Guide to PAS 2050-How to assess the carbon footprint of goods and services.
BSI. (2011). PAS2050:2011,Specifi cation for the assessment of the life cycle greenhouse gas emissions of goods and services.
Chester, M. V., & Horvath, A. (2009). Environmental assessment of passenger transportation should include infrastructure and supply chains. Environmental Research Letters, 4(2), 024008.
Crawford, R. H. (2008). Validation of a hybrid life-cycle inventory analysis method. Journal of Environmental Management, 88(3), 496-506.
Cui, S., Niu, H., Wang, W., Zhang, G., Gao, L., & Lin, J. (2010). Carbon footprint analysis of the Bus Rapid Transit (BRT) system: a case study of Xiamen City. International Journal of Sustainable Development & World Ecology, 17(4), 329-337.
Dias, A. C., & Arroja, L. (2012). Comparison of methodologies for estimating the carbon footprint – case study of office paper. Journal of Cleaner Production, 24, 30-35.
EIA. (2016). Monthly Energy Review - July 2016.
Ercan, T., & Tatari, O. (2015). A hybrid life cycle assessment of public transportation buses with alternative fuel options. The International Journal of Life Cycle Assessment, 20(9), 1213-1231.
Ercan, T., Zhao, Y., Tatari, O., & Pazour, J. A. (2015). Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options. Energy, 93, Part 1, 323-334.
European Commission. (2009). Leading Global Action to 2020 and beyond.
Garcia, R., & Freire, F. (2014). Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of Cleaner Production, 66, 199-209.
GmbH, R. B. (2011). Bosch Automotive Handbook.
Hendrickson, C. T., Lave, L. B., & Matthews, H. S. (2006). Environmental life cycle assessment of goods and services: an input-output approach: Resources for the Future.
Henriksson, P., Zhang, W., Nahid, S., Newton, R., Phan, L., Dao, H., . . . Chaimanuskul, K. (2014). Final LCA case study report—results of LCA studies of Asian aquaculture systems for tilapia, catfish, shrimp, and freshwater prawn.
Hoekstra, A. Y. (2008). Water neutral: Reducing and offsetting the impacts of water footprints.
Hong, S., Chung, Y., Kim, J., & Chun, D. (2016). Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model. Renewable and Sustainable Energy Reviews, 60, 549-559.
Howard, N., & Sharp, D. (2010). Methodology Guidelines for the Materials and Building Products Life Cycle Inventory Database. Building Products Innovation Council, Sydney NSW, Australia.
IEA. (2012). Energy Technology Perspectives 2012.
IEA. (2015a). CO2 Emissions From Fuel Combustion Highlights 2015.
IEA. (2015b). Energy and Climate Change - World Energy Outlook Special Report.
IEA. (2015c). Key World Energy Statistics 2015.
IEA. (2015d). World Energy Outlook Special Briefing for COP21.
IEA. (2016). Energy Technology Perspectives 2016 ExecutiveSummary.
IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 3).
IPCC. (2013). Fifth Assessment Report (AR5).
IPCC. (2014a). Climate Change 2014: Mitigation of Climate Change.
IPCC. (2014b). Climate Change 2014: Synthesis Report.
ISO. (2006). ISO 14040 - Environmental management - Life cycle assessment - Principles and framework.
ISO/TS 14067. (2013). ISO/TS 14067, Greenhouse gases- Carbon footprint of products- Requirements and guidelines for quantification and communication.
Khanna, P., Jain, S., Sharma, P., & Mishra, S. (2011). Impact of increasing mass transit share on energy use and emissions from transport sector for National Capital Territory of Delhi. Transportation Research Part D: Transport and Environment, 16(1), 65-72.
Lajunen, A., & Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy, 106, 329-342.
Lenzen, M. (2000). Errors in conventional and Input‐Output—based Life—Cycle inventories. Journal of industrial ecology, 4(4), 127-148.
Minx, J., Wiedmann , T., Barrett , J. and Suh, S. (2007). Methods review to support the PAS process for the calculation of the greenhouse gas emissions embodied in good and services, Report to the UK Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Department for Biobased Products at the University of Minnesota, DEFRA, London, UK.
Minx, T. W. a. J. (2008). A Definition of 'Carbon Footprint'. Economics Research Trends: Chapter 1, pp. 1-11, Nova Science Publishers, Hauppauge NY, USA.
Mustapa, Siti I., & Bekhet, Hussain A. (2016). Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach. Energy Policy, 89, 171-183.
Ou, X., Zhang, X., & Chang, S. (2010). Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy, 38(1), 406-418.
Pongthanaisawan, J., & Sorapipatana, C. (2013). Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options. Applied Energy, 101, 288-298.
Ribau, J. P., Silva, C. M., & Sousa, J. M. C. (2014). Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses. Applied Energy, 129, 320-335.
Shahraeeni, M., Ahmed, S., Malek, K., Van Drimmelen, B., & Kjeang, E. (2015). Life cycle emissions and cost of transportation systems: Case study on diesel and natural gas for light duty trucks in municipal fleet operations. Journal of Natural Gas Science and Engineering, 24, 26-34.
Stanley, J. K., Hensher, D. A., & Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice, 45(10), 1020-1030.
Suh, S., Lenzen, M., Treloar, G. J., Hondo, H., Horvath, A., Huppes, G., . . . Moriguchi, Y. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science & Technology, 38(3), 657-664.
U.S. DEPARTMENT OF TRANSPORTATION. (2012). USDOT's Energy Blueprint - Efficient Transportation for America.
UNEP and SETAC (2009). Life Cycle Management: How Business Uses it to Decrease Footprint, Create Opportunities and Make Value Chains More Sustainable (P. E. Winifred Power Ed.): UNEP and SETAC.
UNFCCC. (1998). KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK.
Walmsley, M. R. W., Walmsley, T. G., Atkins, M. J., Kamp, P. J. J., Neale, J. R., & Chand, A. (2015). Carbon Emissions Pinch Analysis for emissions reductions in the New Zealand transport sector through to 2050. Energy, 92, Part 3, 569-576.
Wang, Z., Chen, F., & Fujiyama, T. (2015). Carbon emission from urban passenger transportation in Beijing. Transportation Research Part D: Transport and Environment, 41, 217-227.
Whittaker, C., McManus, M. C., & Hammond, G. P. (2011). Greenhouse gas reporting for biofuels: A comparison between the RED, RTFO and PAS2050 methodologies. Energy Policy, 39(10), 5950-5960.
WMO. (2014). WMO Greenhouse Gas Bulletin - No. 10: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2013.
WMO. (2015). WMO Greenhouse Gas Bulletin - No. 11: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2014.
Zhao, Y., Onat, N. C., Kucukvar, M., & Tatari, O. (2016). Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transportation Research Part D: Transport and Environment, 47, 195-207.
Zhou, B., Wu, Y., Zhou, B., Wang, R., Ke, W., Zhang, S., & Hao, J. (2016). Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy, 96, 603-613.
中華人民共和國國家發展和改革委員會. (2016). 中華人民共和國國民經濟和社會發展第十三個五年規畫綱要.
方文揚. (2008). 柴油-天然氣雙燃料混燒系統簡介. 瓦斯季刊 Fuel Gas Quarterly, 第85期.
王慧茹. (2009). 第三類產品環境宣告差異性比較研究-以TFT-LCD產品模組為例. 台北科技大學. Available from Airiti AiritiLibrary database. (2009年)
台灣工業技術研究院. (2013). 碳足跡數據品質評估手冊. Retrieved from https://cfp-calculate.tw/Ashx/FileDownload.ashx?Fid=30.
台灣經濟部能源局. (2016). 我國燃料燃燒CO2排放統計與分析.
立法院. (2015). 溫室氣體減量及管理法.
交通部運輸研究所. (2012). 交通政策白皮書.
曲新生. (2005). 氫能源應用與燃料電池發展現況. 經濟前瞻(100), 113-121.
行政院綠能低碳推動會. (2014). 國家綠能低碳總行動方案.
行政院環保署. (2016). 環境保護統計年報.
行政院環境保護署. (2014). 碳足跡產品類別規則─旅客運輸服務(CFP-PCR─Passenger Transport Services). Retrieved from http://label.szstandards.org/Upload/ProductFile/7ff46eb6276b47669ca9ed0f4844e896.pdf.
陳文樹. (2005). 天然氣汽車簡介與日本業界推展概況. 能源報導 Energy Monthly, 2005.09.
楊成宗;郭中屏. (2014). 油氣雙燃料車: LPG引擎: 全華圖書.
楊志忠;林頌恩;韋文誠;. (2003). 燃料電池的發展現況: 科學發展.
魏佩如. (2010). 產品碳足跡計算不確定性分析之研究. 台北科技大學. Available from Airiti AiritiLibrary database. (2010年)
成功大學產業永續發展中心(2013),產品與服務碳足跡, Retrieved date:2016/10/20. Retrieved from http://b10c10.web.ncku.edu.tw/files/15-1155-97354,c1455-1.php?Lang=zh-tw.
中華人民共和國國家發展和改革委員會 (2016). 中華人民共和國國民經濟和社會發展第十三個五年規畫綱要. Retrieved date Aug 21,2016, http://www.sdpc.gov.cn/zcfb/zcfbghwb/201603/P020160318573830195512.pdf
台灣經濟部能源局 (2016). 我國燃料燃燒CO2排放統計與分析. Retrieved date Aug 24,2016,
http://web3.moeaboe.gov.tw/ecw/populace/content/wHandMenuFile.ashx?file_id=1096
中華民國立法院 (2015). 溫室氣體減量及管理法. Retrieved date Aug 22,2016, http://www.epa.gov.tw/public/Data/5111816383071.pdf
交通部運輸研究所 (2012). 交通政策白皮書. Retrieved date Aug 25,2016, http://www.iot.gov.tw/page?node=f1ba09b8-875b-4829-9243-f82328335a73
行政院綠能低碳推動會 (2014). 國家綠能低碳總行動方案. Retrieved date Aug 25,2016,
http://www.ey.gov.tw/Upload/RelFile/26/714654/b9a16703-0646-417d-9c5c-e0c0652de8e5.pdf
行政院環境保護署 (2016). 環境保護統計年報. Retrieved date Aug 28,2016,http://www.epa.gov.tw/public/Data/681715195371.pdf
行政院環境保護署 (2015). 台灣產品碳足跡資訊網-碳足跡介紹,更新日期:2015年10月5日,Retrieved date Sep 20 ,2016, https://cfp.epa.gov.tw/carbon/ezCFM/Function/PlatformInfo/FLConcept/FLFootIntroduction.aspx
中華民國統計資訊網 (2016) 主計總處統計專區,Retrieved date Sep 02,2016 , http://www.stat.gov.tw/np.asp?ctNode=452
臺南市政府資料開放平台(2016) 大台南公車運量資訊,Retrieved date Sep 14,2016 , http://data.tainan.gov.tw/dataset/bus-ridership
交通部統計資訊網 (2016) Retrieved date Sep 02,2016 , http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
台南市政府主管法規查詢系統(2013) 公告本市市區公車汰換年限及比例,並自103年1月1日生效 Retrieved date Feb 05,2017 , http://law01.tainan.gov.tw/glrsnewsout/NewsContent.aspx?id=849
行政院農業委員會全球資訊網(2010) 「減碳森活‧綠動99」植樹月記者會及主題植樹活動記要,農政與農情,99年3月第213期 , Retrieved date Feb 08,2017 , http://www.coa.gov.tw/ws.php?id=21144&RWD_mode=N&print=Y
華德動能科技股份有限公司(2013). 充電式純電動公車電池規格,Retrieved date Mar 01 ,2017,http://www.racev.com/QA.html