| 研究生: |
鄭筌元 Cheng, Chuan-Yuan |
|---|---|
| 論文名稱: |
超音波流室輔助生質柴油製造 Biodiesel Production using Ultrasonic Flow Cell |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 聲化學 、超音波 、空蝕 、生質柴油 、轉脂化 |
| 外文關鍵詞: | sonochemistry, ultrasound, cavitation, biodiesel, transesterification |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地球正面臨著空氣汙染以及石油耗竭等危機,世界各地環保意識抬頭,因此環保並且可再生的替代能源將會是世界發展的一大重點,其中生質柴油便是替代汽油的一種生質燃料,能夠使排放廢氣減少,並解具有可被生物分解的特性。傳統製程上,是將油類與醇類再加上催化劑混和,並利用機械攪拌加快轉脂化反應,但後來發現將超音波代替機械式攪拌不只能夠提高產率,也能增加反應速率,其原理為將強度夠強的超音波導入液體中能夠產生空蝕汽泡,而空蝕汽泡崩裂後會使油與醇類產生巨大的接觸面積因而加速化學反應。本研究利用有限元素分析模型結合基因演算法去設計流室式聲化學反應器,並與其它文獻所使用的其它形式之聲化學反應器作產率上的比較。
The world is facing air pollution and petroleum depletion, and environmental awareness has risen around the world, therefore environmentally friendly and renewable alternative energy will be a major issue of the entire world in the years to come. Biodiesel is a promising biofuels which is considered as an alternative to petroleum, it is biodegradable and can reduce the exhaust. In general, we use mechanical stir to accelerate the reaction of transesterification, but the later research has shown that if we apply ultrasound during transesterification instead, not only can it increase the yield dramatically but also accelerate the whole reaction. The reason is due to micro-turbulence generated by the collapse of cavitation bubbles generates enormous interfacial area which results in acceleration of the reaction. In this study, we combine the finite element analysis model with genetic algorithm to design ultrasonic flow cell to compare the performance with different forms of ultrasonic reactors from other research’s results.
[1] L.Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Philosophical Magazine, 34, 94-98, 1917.
[2] W.T.Richards and A.L.Loomis, The chemical effects of high frequency sound waves I. A preliminary survey, Journal of the American Chemical Society, 49, 3086-3100, 1927.
[3] P.R.Birkin, J.F.Power, A.M.L.Vincotte, and T.G.Leighton, A 1 kHz resolution frequency study of a variety of sonochemical processes, Physical Chemistry Chemical Physics, 5, 4170-4174, 2003.
[4] P.R.Gogate, S.Mujumdar, and A.B.Pandit, Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction, Advances in Environmental Research, 7, 283-299, 2003.
[5] T.G.Leighton, What is ultrasound?, Progress in Biophysics and Molecular Biology, 93, 3-83, 2007.
[6] B.Toukoniity, J.-P.Mikkola, D.Y.Murzin, and T.Salmi, Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions, Applied Catalysis A: General, 279, 1-22, 2005.
[7] K.S.Suslick, The Chemical Effects of Ultrasound, Scientific American, 260, 80-86, 1989.
[8] T.J.Mason, Ultrasound in synthetic organic chemistry, Chemical Society Reviews, 26, 443-451, 1997.
[9] A.Ledoux, Theory of Piezoelectric Materials and Their Applications in Civil Engineering, Master of Engineering in Civil and Environmental Engineering at The Massachusetts Institute of Technology, 1-41, 2011.
[10] I.Patel, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device, INTECH Open Access Publisher, 2011.
[11] S.Parida, D.K.Sahu, and P.K.Misra, Preparation of Biodiesel Using Ultrasonication Energy and its Performance in CI Engine, International Journal of Green Energy, 9, 430-440, 2012.
[12] R.M.Joshi and M.J.Pegg, Flow properties of biodiesel fuel blends at low temperatures, Fuel, 86, 143-151, 2007.
[13] S.M.Hingu, P.R.Gogate and V.K.Rathod, Synthesis of biodiesel from waste cooking oil using sonochemical reactors, Ultrasonics Sonochemistry, 17, 827-832, 2010.
[14] D.E.Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, 1989.
[15] A.P.Hulst, On a family of high-power transducers, Ultrasonics International Conference Proceedings, 283-293, 1973.
[16] Y.C.Wang and M.C.Yao, Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor, Ultrasonics Sonochemistry, 20, 565-570, 2013.
[17] F.Faid, F.Contamine, A.M.Wilhelm and H.Delmas, Comparison of ultrasound effects in different reactors at 20 kHz, Ultrasonics Sonochemistry, 5, 119-124, 1998.
[18] P.Chand, V.R.Chintareddy, J.G.Verkade and D.Grewell, Enhancing Biodiesel Production from Soybean Oil Using Ultrasonics, Energy and Fuels, 24, 2010-2015, 2010.
[19] A.R.Gupta, S.V.Yadav and V.K.Rathod, Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound, Fuel, 158, 800-806, 2015.
[20] 馮笠晏, 高效率流室式聲化學反應器之研製, 國立成功大學機械工程學系學位 論文, 1-74, 2015.
[21] 朱贊宇, 聲化學反應器中非均勻汽泡對聲場之影響, 國立成功大學機械工程學系學位論文, 1-70, 2016.
校內:2022-07-01公開