簡易檢索 / 詳目顯示

研究生: 石璟蕙
Shih, Ching-Hui
論文名稱: 黴菌生長對受潮壁紙所含DEHP逸散之影響
Impact of mold growth on Di (2-ethylhexyl) phthalate emission from wallpapers with higher moisture
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 壁紙鄰苯二甲酸二(2-乙基己基)酯受潮真菌
外文關鍵詞: Wallpaper, Di (2-ethylhexyl)phthalate, Moist, Fungi
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究指出,當室內壁紙遭受水患侵襲且有黴斑孳生時,室內灰塵可被測得較高的鄰苯二甲酸二(2-乙基己基)酯類 (Di (2-ethylhexyl) phthalate, DEHP) 濃度,本實驗室過去利用暴露艙實驗也發現,當壁紙受潮,暴露艙中的空氣及灰塵表面上的DEHP濃度明顯較壁紙沒有受潮的實驗組高,因此壁紙受潮逸散出的DEHP可能是影響室內環境DEHP濃度分佈的重要因素之一。然而,目前尚無研究探討壁紙受潮且有真菌的生長,是否會有更高的DEHP逸散,並增加人員的暴露量。因此,本研究利用暴露艙實驗評估壁紙受潮且有真菌孢子的生長,是否會影響壁紙中DEHP的逸散,並比較不同真菌菌種種類對壁紙中DEHP逸散的影響,及在不同環境介質的差異。本研究以過去實驗室建立之玻璃暴露艙系統進行實驗,該暴露艙含有溫溼度監測系統、建材與灰塵放置架和灰塵與空氣樣本之收集系統,暴露艙的溫度與相對溼度則分別被控制在28℃和100%,本研究選定的建材為含有DEHP約12.7% (w/w) 的壁紙。另外,本研究採用的真菌菌株為台灣室內空氣中與受潮建材表面上最常出現之三種真菌菌種:(1) Aspergillus versicolor (A.v)、(2) Cladosporium cladosporioides (C.c)和(3) Penicillium chrysogenum (P.c)。依實驗目的,暴露艙實驗條件將被分為五個組別:(1) 受潮飽和壁紙、(2) 受潮飽和壁紙+孢子懸浮液(Aspergillus versicolor)、(3) 受潮飽和壁紙+孢子懸浮液 (Cladosporium cladosporioides)、(4) 受潮飽和壁紙+孢子懸浮液(Cladosporium cladosporioides)和 (5) 受潮飽和壁紙+混合前述三種孢子的懸浮液(Mix),每個組別的實驗均為三重覆。每個暴露艙系統的實驗時間均為30天,並分別在第2、4、6、8、10、15、20、25和30天進行空氣與灰塵樣本的採集,並於第30天採集暴露艙內部之表面擦拭樣本。所有樣本在經DEHP前處理萃取後,以Liquid Chromatograph/Mass Spectrometer分析DEHP濃度,比較不同實驗組別之間的DEHP濃度差異,也探討空氣、灰塵和暴露艙內部表面之擦拭樣本的DEHP濃度差異。根據空氣樣本結果表示,在九個採樣時間點內,除了在第15天,第25天與第30天達統計顯著差異之外(KW-test, p<0.05),其餘時間點並無顯著差異,另外根據Mann-Whitney U test檢定結果,相較於單純受潮壁紙組別,在第15天時受潮飽和壁紙且添加A.v組別有最高的濃度(p<0.05),在第25天時,受潮飽和壁紙且添加C.c組別有最高的濃度(p<0.05),在第30天時,受潮飽和壁紙且添加混合孢子組別有最高的濃度(p<0.05),在空氣累積質量濃度的部分,發現第30天時,受潮飽和壁紙且添加A.v組別有最高的DEHP累積質量,整體來說,有添加真菌生長之受潮壁紙組別較單純受潮壁紙組別逸散更高的DEHP濃度至空氣中;根據灰塵樣本結果表示,在九個採樣時間點內,除了在第2天,第6天達統計顯著差異之外(KW-test, p<0.05),其餘時間點並無顯著差異,另外根據Mann-Whitney U test檢定結果,相較於單純受潮壁紙組別,在第2天時,受潮飽和壁紙且添加P.c組別有最高的濃度(p<0.05),在第6天時,受潮飽和壁紙且添加A.v組別有最高的濃度(p<0.05),在灰塵累積質量濃度的部分,發現第30天時受潮飽和壁紙且添加P.c組別有最高的DEHP累積質量,整體來說,單純受潮壁紙組別相較於添加真菌生長組別有較高的DEHP累積質量;在擦拭樣本中,根據Mann-Whitney U test檢定結果,顯示任何添加真菌生長受潮組別與單純受潮壁紙組別相比皆達統計顯著差異(p<0.05),且受潮飽和壁紙且添加P.c組別具有較高的DEHP濃度。本研究證實,含有DEHP的壁紙若受潮且有真菌的生長,確實會增加壁紙中DEHP的逸散,因此,移除受潮或有真菌生長的壁紙,有助於降低室內的DEHP暴露風險。

    The aim of this study is to evaluate whether fungal growth affects the levels of Di (2-ethylhexyl) phthalate on wallpaper with high moist and compare the emission level of Di (2-ethylhexyl) phthalate of different fungal strains. Moreover, the difference of Di (2-ethylhexyl) phthalate levels among air, dust, and wipe samples is also discussed. Overall, the DEHP concentration in the air correlates more with the factor of fungal growth on the wallpapers than wallpaper with only moisture present. Fungal spore may increase the more adsorption area of DEHP, and induced the higher concentration of DEHP in gas phase. Although the moisture wallpaper + P.c groups have the highest dust cumulative mass concentration of DEHP on the 30th day, the moisture wallpaper group affects more DEHP concentration measured in the dust than that of the fungal growth group, possibly attributable to the fact that, fungus often produced the mycotoxins, metabolites and other organic substances during this period, which may occupy the dust surface area, and competed with DEHP emission, resulting the lower concentration of DEHP being adsorbed on dust. When comparing the DEHP levels of wiped samples, those from wallpapers with fungal growth were significantly different from those from the moist-only wallpaper groups. Higher relative humidity and water film on the material surface are apt for fungal growth. Nevertheless, the fungal spores with DEHP were also collected while we took the wiped samples. It is plausible that the main source of DEHP on the wiped samples may be from the fungal spore particles, which absorb the DEHP in the gas phase. We conclude from this study that fungal growth affects the DEHP emission on wallpaper with high moisture, and removal or cleaning of the wallpapers with high moisture or fungal growth are highly critical from the standpoint of public health advisory.

    目次 第一章 前言 1 1-1 研究背景與現況 1 1-2 研究目的 2 1-3 研究重要性 2 第二章 文獻回顧 3 2-1 全球暖化與氣候變遷 3 2-2 室內真菌生長之影響因子與種類 6 2-2-1 影響室內真菌生長因子 6 2-2-2 受潮環境與真菌菌種種類 10 2-3 真菌生長對建築材料影響 12 2-4 DEHP鄰苯二甲酸二(2-乙基己基)酯類特性 16 2-4-1 室內鄰苯二甲酸二(2-乙基己基)酯類之健康危害 16 2-4-2 室內鄰苯二甲酸二(2-乙基己基)酯類之來源與濃度分佈 20 2-4-3 室內鄰苯二甲酸二(2-乙基己基)酯類逸散之影響因子 27 第三章 研究材料與方法 35 3-1 研究架構 35 3-2 實驗系統設備 36 3-3 研究真菌菌株 37 3-3-1 真菌菌株的選擇 37 3-3-2 真菌菌株孢子懸浮溶液的製備 37 3-4 研究壁紙的選擇 39 3-4-1 建材含水量的量測 40 3-5 實驗流程與參數設定 41 3-5-1 實驗流程圖 42 3-6 暴露艙內樣本採集 43 3-6-1 暴露艙內空氣中DEHP濃度樣本採集 43 3-6-2 暴露艙內灰塵中DEHP樣本採集 44 3-6-3 暴露艙內擦拭樣本採集 44 3-7 DEHP的分析流程 46 3-7-1 試藥與萃取溶劑 46 3-7-2 標準檢量線配置 46 3-7-3 空氣樣本處理步驟 46 3-7-4 灰塵樣本處理步驟 47 3-7-5 擦拭樣本處理步驟 47 3-7-6 樣本分析儀器 48 3-7-7 分析方法品質保證與品質管理 49 3-8 壁紙上真菌生長植種與生長定量 53 3-8-1 壁紙上真菌植種 53 3-8-2 真菌生長程度評分量表 53 3-8-3 Image J 生物影像分析處理軟體 54 3-9 統計分析方法 55 第四章 結果 56 4-1 暴露艙環境條件控制 56 4-1-1 暴露艙內溫溼度控制結果 57 4-1-2 暴露艙內壁紙含水量控制結果 60 4-1-3 暴露艙內壁紙上真菌生長結果 62 4-2 空氣樣本中DEHP 濃度與質量估算 69 4-3 灰塵樣本中DEHP 濃度與質量估算 75 4-4 擦拭樣本中DEHP 殘留質量 81 4-5 真菌生長情形與DEHP 逸散濃度之關係 84 4-6 小結 89 第五章 討論 93 5-1 受潮與真菌生長對於壁紙結構影響 93 5-2 受潮與真菌生長對於壁紙含有DEHP逸散影響 95 5-2-1 受潮影響 95 5-2-2 真菌生長影響 96 5-3 受潮與真菌生長影響空氣、灰塵、與擦拭樣本中DEHP濃度比較 99 5-4 研究限制 106 第六章 結論與建議 107 6-1 結論 107 6-2 建議 108 參考文獻 109 附錄-1 QA/QC 執行結果 120

    Abràmoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with imagej. Biophotonics international 11:36-42.
    Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, et al. 2008. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environmental health perspectives 116:467-473.
    Afshari A, Gunnarsen L, Clausen P, Hansen V. 2004. Emission of phthalates from pvc and other materials. Indoor air 14:120-128.
    Aguilar-Alvarado Y, Báez-Sánchez MdR, Martínez-Carrera D, Ahuactzin-Pérez M, Cuamatzi-Muñoz M, Sánchez C. 2015. Mycelial growth and enzymatic activities of fungi isolated from recycled paper wastes grown on di (2-ethylhexyl) phthalate. Pol J Environ Stud 24:1897-1902.
    Al Touqi F, Hameed Sulaiman S, Al-Reasi H. 2018. Concentrations of selected phthalate esters in surface dust in omani houses. International Journal of Environmental Science and Development 9.
    Albar HMSA, Ali N, Shahzad K, Ismail IMI, Rashid MI, Wang W, et al. 2017. Phthalate esters in settled dust of different indoor microenvironments; source of non-dietary human exposure. Microchemical Journal 132:227-232.
    Aleksic B, Draghi M, Ritoux S, Bailly S, Lacroix M, Oswald IP, et al. 2017. Aerosolization of mycotoxins after growth of toxinogenic fungi on wallpaper. Appl Environ Microbiol 83:e01001-01017.
    Amara I, Timoumi R, Annabi E, Neffati F, Najjar MF, Bouaziz C, et al. 2019. Di (2-ethylhexyl) phthalate induces cardiac disorders in balb/c mice. Environmental Science and Pollution Research:1-10.
    Andersen B, Frisvad JC, Sondergaard I, Rasmussen IS, Larsen LS. 2011. Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180-4188.
    ASTM D. 1998. 6329–98: Standard guide for developing methodology for evaluating the ability of indoor materials to support microbial growth using static environmental chambers. West Conshohocken, PA: American Society for Testing and Materials (ASTM).
    ASTM G. 1987. G21: Standard practice for determining resistance of synthetic polymeric materials to fungi. RUBBER SHEET Section 9661.
    Bamai YA, Araki A, Kawai T, Tsuboi T, Saito I, Yoshioka E, et al. 2014. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in japanese dwellings. Science of the total environment 468:147-157.
    Barakat R, Lin P-CP, Rattan S, Brehm E, Canisso IF, Abosalum ME, et al. 2017. Prenatal exposure to dehp induces premature reproductive senescence in male mice. Toxicological Sciences 156:96-108.
    Bekö G, Callesen M, Weschler CJ, Toftum J, Langer S, Sigsgaard T, et al. 2015. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. Environmental research 137:432-439.
    Benning JL, Liu Z, Tiwari A, Little JC, Marr LC. 2013. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring. Environmental science & technology 47:2696-2703.
    Bergh C, Torgrip R, Emenius G, Östman C. 2011. Organophosphate and phthalate esters in air and settled dust–a multi‐location indoor study. Indoor air 21:67-76.
    Bergh C, Luongo G, Wise S, Östman C. 2012. Organophosphate and phthalate esters in standard reference material 2585 organic contaminants in house dust. Analytical and bioanalytical chemistry 402:51-59.
    Bissett J. 1987. Fungi associated with urea-formaldehyde foam insulation in canada. Mycopathologia 99:47-56.
    Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, et al. 2014. Semivolatile organic compounds in indoor air and settled dust in 30 french dwellings. Environ Sci Technol 48:3959-3969.
    Braun JM, Sathyanarayana S, Hauser R. 2013. Phthalate exposure and children’s health. Current opinion in pediatrics 25:247.
    Buser MC, Murray HE, Scinicariello F. 2014. Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of nhanes 2007–2010. International journal of hygiene and environmental health 217:687-694.
    Carll C, TenWolde A, Munson R. 2007. Moisture performance of a contemporary wood-frame house operated at design indoor humidity levels.
    Casals-Casas C, Desvergne B. 2011. Endocrine disruptors: From endocrine to metabolic disruption. Annual review of physiology 73:135-162.
    Chi C, Xia M, Zhou C, Wang X, Weng M, Shen X. 2017. Determination of 15 phthalate esters in air by gas-phase and particle-phase simultaneous sampling. Journal of Environmental Sciences 55:137-145.
    Chino S, Kato S, Seo J, Ataka Y. 2009. Study on emission of decomposed chemicals of esters contained in pvc flooring and adhesive. Building and Environment 44:1337-1342.
    Chino S, Kato S, Seo J, Kim J. 2013. Measurement of 2-ethyl-1-hexanol emitted from flooring materials and adhesives. Journal of adhesion science and technology 27:659-670.
    Chiou CT, Shoup TD. 1985. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environmental science & technology 19:1196-1200.
    Clark N, Ammann H, Brunekreef B, Eggleston P, Fisk W, Fullilove R, et al. 2004. Damp indoor spaces and health. Washington, DC: Institute of Medicine of the National Academies.
    Clausen PA, Xu Y, Kofoed-Sørensen V, Little JC, Wolkoff P. 2007. The influence of humidity on the emission of di-(2-ethylhexyl) phthalate (dehp) from vinyl flooring in the emission cell “flec”. Atmospheric Environment 41:3217-3224.
    Clausen PA, Liu Z, Xu Y, Kofoed-Sørensen V, Little JC. 2010. Influence of air flow rate on emission of dehp from vinyl flooring in the emission cell flec: Measurements and cfd simulation. Atmospheric Environment 44:2760-2766.
    Clausen PA, Liu Z, Kofoed-Sørensen V, Little J, Wolkoff P. 2012. Influence of temperature on the emission of di-(2-ethylhexyl) phthalate (dehp) from pvc flooring in the emission cell flec. Environmental science & technology 46:909-915.
    D'Orazio M, Palladini M, Aquilanti L, Clementi F. 2009. Experimental evaluation of the growth rate of mould on finishes for indoor housing environments: Effects of the 2002/91/ec directive. Building and Environment 44:1668-1674.
    Das T, Gohel H, Panchal M, Ghosh S, Braganza V. 2014. Determination of crude oil degradation efficiency of glass biofilm of isolated bacterium and fungus. Int Res J Biol Sci 3:67-69.
    David RM. 2006. Proposed mode of action for in utero effects of some phthalate esters on the developing male reproductive tract. Toxicologic pathology 34:209-219.
    Dirtu AC, Geens T, Dirinck E, Malarvannan G, Neels H, Van Gaal L, et al. 2013. Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environment international 59:344-353.
    Doll SC. 2002. Determination of limiting conditions for fungal growth in the built environment:Harvard School of Public Health, Department of Environmental Health.
    Drewello U, Weißmann R, Rölleke S, Müller E, Wuertz S, Fekrsanati F, et al. 2000. Biogenic surface layers on historical window glass and the effect of excimer laser cleaning. Journal of Cultural Heritage 1:S161-S171.
    Dumon H, Palot A, Charpin-Kadouch C, Quéralt J, Lehtihet K, Garans M, et al. 2009. Mold species identified in flooded dwellings. Aerobiologia 25:341-344.
    Durmaz E, Özmert EN, Erkekoglu P, Giray B, Derman O, Hincal F, et al. 2010. Plasma phthalate levels in pubertal gynecomastia. Pediatrics 125:e122.
    Eduard W. 2006. The nordic expert group for criteria documentation of health risks from chemicals: 139. Fungal spores.
    Field CB, Barros V, Stocker TF, Dahe Q. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change:Cambridge University Press.
    Flemming H-C, Wingender J. 2010. The biofilm matrix. Nature reviews microbiology 8:623.
    Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen C, Petersen JH, et al. 2012. High urinary phthalate concentration associated with delayed pubarche in girls. International journal of andrology 35:216-226.
    Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Rüden H. 2004. Abstract. Indoor air 14:188-195.
    Garrett M, Rayment P, Hooper M, Abramson M, Hooper B. 1998. Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children. Clinical and Experimental Allergy 28:459-467.
    Gascon M, Casas M, Morales E, Valvi D, Ballesteros-Gómez A, Luque N, et al. 2015. Prenatal exposure to bisphenol a and phthalates and childhood respiratory tract infections and allergy. Journal of allergy and clinical immunology 135:370-378. e377.
    Gaylarde C, Silva MR, Warscheid T. 2003. Microbial impact on building materials: An overview. Materials and Structures 36:342-352.
    Gong M, Wang L, Zhang Y. Measurement of phthalate concentrations in pvc wallpapers and floorings. In: Proceedings of the Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning, 2014, Springer, 97-103.
    Grant C, Hunter C, Flannigan B, Bravery A. 1989. The moisture requirements of moulds isolated from domestic dwellings. International Biodeterioration 25:259-284.
    Gravesen S, Nielsen PA, Iversen R, Nielsen KF. 1999. Microfungal contamination of damp buildings--examples of risk constructions and risk materials. Environmental Health Perspectives 107:505.
    Gu J-D, Ford TE, Berke NS, Mitchell R. 1998. Biodeterioration of concrete by the fungus fusarium. International biodeterioration & biodegradation 41:101-109.
    Guiamet P, Borrego S, Lavin P, Perdomo I, de Saravia SG. 2011. Biofouling and biodeterioration in materials stored at the historical archive of the museum of la plata, argentine and at the national archive of the republic of cuba. Colloids and Surfaces B: Biointerfaces 85:229-234.
    Gutarowska B, Czyżowska A. 2009. The ability of filamentous fungi to produce acids on indoor building materials. Annals of microbiology 59:807-813.
    Gutarowska B. 2010. Metabolic activity of moulds as a factor of building materials biodegradation. Polish Journal of Microbiology 59:119-124.
    Haas D, Habib J, Galler H, Buzina W, Schlacher R, Marth E, et al. 2007. Assessment of indoor air in austrian apartments with and without visible mold growth. Atmospheric Environment 41:5192-5201.
    Hippelein M, McLachlan MS. 2000. Soil/air partitioning of semivolatile organic compounds. 2. Influence of temperature and relative humidity. Environmental Science & Technology 34:3521-3526.
    Hoang CP, Kinney KA, Corsi RL, Szaniszlo PJ. 2010. Resistance of green building materials to fungal growth. International Biodeterioration & Biodegradation 64:104-113.
    Hänninen OO. 2011. Who guidelines for indoor air quality: Dampness and mold. In: Fundamentals of mold growth in indoor environments and strategies for healthy living:Springer, 277-302.
    Hoppin JA, Jaramillo R, London SJ, Bertelsen RJ, Salo PM, Sandler DP, et al. 2013. Phthalate exposure and allergy in the us population: Results from nhanes 2005–2006. Environmental health perspectives 121:1129-1134.
    Hsu N-Y, Chen P-Y, Chang H-W, Su H-J. 2011. Changes in profiles of airborne fungi in flooded homes in southern taiwan after typhoon morakot. Science of the total environment 409:1677-1682.
    Hsu N-Y, Chen C-Y, Lee C-C, Su H-J. 2012. Relationship between indoor phthalate concentrations and dampness or visible mold. Proceedings of Healthy Buildings 2012.
    Hsu N-Y, Liu Y-C, Lee C-W, Lee C-C, Su H-J. 2017. Higher moisture content is associated with greater emissions of dehp from pvc wallpaper. Environmental research 152:1-6.
    Hsu NY, Liu YC, Lee CW, Lee CC, Su HJ. 2017. Higher moisture content is associated with greater emissions of dehp from pvc wallpaper. Environ Res 152:1-6.
    Hyvärinen A. 2002. Characterizing moisture damaged buildings: Environmental and biological monitoring:National Public Health Institute.
    Jarvis JQ, Morey PR. 2001. Allergic respiratory disease and fungal remediation in a building in a subtropical climate. Applied Occupational and Environmental Hygiene 16:380-388.
    Jeon S, Kim K-T, Choi K. 2016. Migration of dehp and dinp into dust from pvc flooring products at different surface temperature. Science of the Total Environment 547:441-446.
    Jha A, Lamond J, Bloch R, Bhattacharya N, Lopez A, Papachristodoulou N, et al. 2011. Five feet high and rising: Cities and flooding in the 21st century:The World Bank.
    Kamijima M, Sakai K, Shibata E, YAMADA T, ITOHARA S, OHNO H, et al. 2002. 2-ethyl-1-hexanol in indoor air as a possible cause of sick building symptoms. Journal of Occupational Health 44:186-191.
    Kanazawa A, Saito I, Araki A, Takeda M, Ma M, Saijo Y, et al. 2010. Association between indoor exposure to semi‐volatile organic compounds and building‐related symptoms among the occupants of residential dwellings. Indoor air 20:72-84.
    Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi O-I, Tsatsakis AM, et al. 2016. A global assessment of phthalates burden and related links to health effects. Environment international 97:212-236.
    Kim H-H, Yang J-Y, Kim S-D, Yang S-H, Lee C-S, Shin D-C, et al. 2011. Health risks assessment in children for phthalate exposure associated with childcare facilities and indoor playgrounds. Environmental health and toxicology 26.
    Kim H-t, Tanabe S-i. 2017. Measuring degree of contamination by semi-volatile organic compounds (svoc) in interiors of korean homes and kindergartens. Journal of Asian Architecture and Building Engineering 16:661-668.
    Kininmonth W. 2010. Clausius-clapeyron and the regulation of global warming. Fisica E 26:5-6.
    Komulainen J, Lu X, Hakkarainen H, Weckström A, Viljanen M, Liukkonen S. Diffusion of some mvocs through building moisture barriers. In: Proceedings of the Research in Building Physics: Proceedings of the Second International Conference on Building Physics, Leuven, Belgium, 14-18 September 2003, 2003, CRC Press, 71.
    Korpi A, Pasanen A-L, Pasanen P, Kalliokoski P. 1997. Microbial growth and metabolism in house dust. International Biodeterioration & Biodegradation 40:19-27.
    Korpi A, Järnberg J, Pasanen A-L. 2009. Microbial volatile organic compounds. Critical reviews in toxicology 39:139-193.
    Krus M, Sedlbauer K. 2002. Brauchen wir gefährdungsklassen für schimmelpilze zur beurteilung von baukonstruktionen. Do we need hazardous classes of mould fungi for the assessment of building parts:790-802.
    Lacey J, Dutkiewicz J. 1994. Bioaerosols and occupational lung disease. Journal of aerosol science 25:1371-1404.
    Lee C-W, Jung T-K, Kim M-G. 2008. Content of plasticizers and heavy metals in the selling pvc wallpapers. Analytical Science and Technology 21:135-142.
    Lee J, Lee J-H, Kim C-K, Thomsen M. 2014. Childhood exposure to dehp, dbp and bbp under existing chemical management systems: A comparative study of sources of childhood exposure in korea and in denmark. Environment international 63:77-91.
    Lee S, Seo J. 2018. Examination of environmental factors influencing the emission rates of semivolatile organic compounds. Advances in Civil Engineering 2018.
    Li Y, Lu J, Yin X, Liu Z, Tong Y, Zhou L. 2019. Indoor phthalate concentrations in residences in shihezi, china: Implications for preschool children’s exposure and risk assessment. Environmental Science and Pollution Research:1-10.
    Luongo G, Östman C. 2016. Organophosphate and phthalate esters in settled dust from apartment buildings in s tockholm. Indoor air 26:414-425.
    Macher J. Bioaerosols: Assessment and control. 1999, American Conference of Governmental Industrial Hygienists (ACGIH).
    Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. 2016. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life sciences 145:265-273.
    Matysik S, Herbarth O, Mueller A. 2008. Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. Journal of microbiological methods 75:182-187.
    McGinnis MR. 2007. Indoor mould development and dispersal. Medical Mycology 45:1-9.
    McMullin DR, Nsiama TK, Miller JD. 2014. Secondary metabolites from penicillium corylophilum isolated from damp buildings. Mycologia 106:621-628.
    Menne B, Murray V, Organization WH. 2013. Floods in the who european region: Health effects and their prevention.
    Meyer AS, Isaksen A. 1995. Application of enzymes as food antioxidants. Trends in Food Science & Technology 6:300-304.
    Miller JD, McMullin DR. 2014. Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Applied microbiology and biotechnology 98:9953-9966.
    MINIOTAITE R. 2014. The impact of climate parameters on the surface of buildings’walls. In: Sustainable solutions in structural engineering and construction:ISEC Press Bangkok, Thailand.
    Morris G, Kokki M, Anderson K, Richardson M. 2000. Sampling of aspergillus spores in air. Journal of Hospital Infection 44:81-92.
    Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B. 2015. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental science & technology 49:4019-4035.
    Nielsen KF, Holm G, Uttrup L, Nielsen P. 2004. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration & Biodegradation 54:325-336.
    Nilsson A, Kihlstrom E, Lagesson V, Wessen B, Szponar B, Larsson L, et al. 2004. Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 14:74-82.
    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. 2014. Climate change 2014: Synthesis report. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change:Ipcc.
    Pei X, Song M, Guo M, Mo F, Shen X. 2013. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmospheric Environment 68:17-23.
    Petrlík RJ, Straková MJ. Toxic substances in toys, products for children and care of them in belarus.
    Pocar P, Fiandanese N, Berrini A, Secchi C, Borromeo V. 2017. Maternal exposure to di (2-ethylhexyl) phthalate (dehp) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicology and applied pharmacology 322:113-121.
    Previati M, Canone D, Bevilacqua I, Boetto G, Pognant D, Ferraris S. 2012. Evaluation of wood degradation for timber check dams using time domain reflectometry water content measurements. Ecological engineering 44:259-268.
    Radke EG, Braun JM, Meeker JD, Cooper GS. 2018. Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence. Environment international 121:764-793.
    Rakkestad KE, Dye CJ, Yttri KE, Holme JA, Hongslo JK, Schwarze PE, et al. 2007. Phthalate levels in norwegian indoor air related to particle size fraction. Journal of environmental monitoring 9:1419-1425.
    Reeb JE, Milota MR, Association WDK, Association WDK. 1999. Moisture content by the oven-dry method for industrial testing.
    Reiser R, Meile A, Hofer C, Knutti R. 2002. Indoor air pollution by volatile organic compounds (voc) emitted from flooring material in a technical university in switzerland. Proceedings: Indoor Air 2002:1004-1009.
    Reponen T, Hyvärinen A, Ruuskanen J, Raunemaa T, Nevalainen A. 1994. Comparison of concentrations and size distributions of fungal spores in buildings with and without mould problems. Journal of Aerosol Science 25:1595-1603.
    Rowdhwal SSS, Chen J. 2018. Toxic effects of di-2-ethylhexyl phthalate: An overview. BioMed research international 2018.
    Rudel RA, Perovich LJ. 2009. Endocrine disrupting chemicals in indoor and outdoor air. Atmospheric Environment 43:170-181.
    Sampath S, Selvaraj KK, Shanmugam G, Krishnamoorthy V, Chakraborty P, Ramaswamy BR. 2017. Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern india. Environmental Pollution 221:407-417.
    Samson RA. 1994. Health implications of fungi in indoor environments. Air Qual Monogr 2:531-538.
    Sautour M, Dantigny P, Divies C, Bensoussan M. 2001. A temperature-type model for describing the relationship between fungal growth and water activity. International Journal of Food Microbiology 67:63-69.
    Schöller CE, Gürtler H, Pedersen R, Molin S, Wilkins K. 2002. Volatile metabolites from actinomycetes. Journal of agricultural and food chemistry 50:2615-2621.
    Sirivithayapakorn S, Limtrakul S. 2008. Distribution coefficient and adsorption–desorption rates of di (2-ethylhexyl) phthalate (dehp) onto and from the surface of suspended particles in fresh water. Water, air, and soil pollution 190:45-53.
    Song M, Chi C, Guo M, Wang X, Cheng L, Shen X. 2015. Pollution levels and characteristics of phthalate esters in indoor air of offices. Journal of Environmental Sciences 28:157-162.
    Standard A. 1976. Method of testing air-cleaning devices used in general ventilation for removing particulate matter. The American Society of Heating, Regrigerating, and Air-Condition Engineers, Inc 345.
    Stringer R, Johnston P, Erry B. 2001. Toxic chemicals in a child’s world: An investigation into pvc plastic products. In: Toxic chemicals in a child's world: An investigation into pvc plastic products:Greenpeace International.
    Su H-J, Wu P-C, Chen H-L, Lee F-C, Lin L-L. 2001. Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern taiwan. Environmental Research 85:135-144.
    Subedi B, Sullivan KD, Dhungana B. 2017. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environmental Pollution 230:701-708.
    Sukiene V, Gerecke AC, Park Y-M, Zennegg M, Bakker MI, Delmaar CJ, et al. 2016. Tracking svocs’ transfer from products to indoor air and settled dust with deuterium-labeled substances. Environmental science & technology 50:4296-4303.
    Sun Q, Cornelis MC, Townsend MK, Tobias DK, Eliassen AH, Franke AA, et al. 2014. Association of urinary concentrations of bisphenol a and phthalate metabolites with risk of type 2 diabetes: A prospective investigation in the nurses’ health study (nhs) and nhsii cohorts. Environmental health perspectives 122:616-623.
    Takeuchi S, Kojima H, Saito I, Jin K, Kobayashi S, Tanaka-Kagawa T, et al. 2014. Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in sapporo, japan. Science of the Total Environment 491:28-33.
    Takeuchi S, Tanaka-Kagawa T, Saito I, Kojima H, Jin K, Satoh M, et al. 2018. Differential determination of plasticizers and organophosphorus flame retardants in residential indoor air in japan. Environmental Science and Pollution Research 25:7113-7120.
    Teil MJ, Blanchard M, Chevreuil M. 2006. Atmospheric fate of phthalate esters in an urban area (paris-france). Science of the Total Environment 354:212-223.
    Tran TM, Kannan K. 2015. Occurrence of phthalate diesters in particulate and vapor phases in indoor air and implications for human exposure in albany, new york, USA. Archives of environmental contamination and toxicology 68:489-499.
    Tran TM, Le HT, Minh TB, Kannan K. 2017. Occurrence of phthalate diesters in indoor air from several northern cities in vietnam, and its implication for human exposure. Science of The Total Environment 601:1695-1701.
    Trasande L, Sathyanarayana S, Spanier AJ, Trachtman H, Attina TM, Urbina EM. 2013. Urinary phthalates are associated with higher blood pressure in childhood. The Journal of pediatrics 163:747-753. e741.
    Upson K, Sathyanarayana S, De Roos AJ, Thompson ML, Scholes D, Dills R, et al. 2013. Phthalates and risk of endometriosis. Environmental research 126:91-97.
    Vacher S, Hernandez C, Bärtschi C, Poussereau N. 2010. Impact of paint and wall-paper on mould growth on plasterboards and aluminum. Building and Environment 45:916-921.
    Viitanen H, Vinha J, Salminen K, Ojanen T, Peuhkuri R, Paajanen L, et al. 2010. Moisture and bio-deterioration risk of building materials and structures. Journal of Building Physics 33:201-224.
    Vujanovic V, Smoragiewicz W, Krzysztyniak K. 2001. Airborne fungal ecological niche determination as one of the possibilities for indirect mycotoxin risk assessment in indoor air. Environmental Toxicology: An International Journal 16:1-8.
    Wójtowicz AK, Sitarz-Głownia AM, Szczęsna M, Szychowski KA. 2019. The action of di-(2-ethylhexyl) phthalate (dehp) in mouse cerebral cells involves an impairment in aryl hydrocarbon receptor (ahr) signaling. Neurotoxicity research 35:183-195.
    Wang H, Li X-N, Li P-C, Liu W, Du Z-H, Li J-L. 2019. Modulation of heat-shock response is associated with di (2-ethylhexyl) phthalate (dehp)-induced cardiotoxicity in quail (coturnix japonica). Chemosphere 214:812-820.
    Wang I-J, Karmaus WJ, Chen S-L, Holloway JW, Ewart S. 2015. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clinical epigenetics 7:27.
    Wang L, Gong M, Xu Y, Zhang Y. 2017. Phthalates in dust collected from various indoor environments in beijing, china and resulting non-dietary human exposure. Building and Environment 124:315-322.
    Wang X, Tao W, Xu Y, Feng J, Wang F. 2014. Indoor phthalate concentration and exposure in residential and office buildings in xi'an, china. Atmospheric environment 87:146-152.
    Wang Y, Zhu H, Kannan K. 2019. A review of biomonitoring of phthalate exposures. Toxics 7:21.
    Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS. 2000. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194-3200.
    Wen Z-D, Wu W-M, Ren N-Q, Gao D-W. 2016. Synergistic effect using vermiculite as media with a bacterial biofilm of arthrobacter sp. For biodegradation of di-(2-ethylhexyl) phthalate. Journal of hazardous materials 304:118-125.
    Weschler CJ. 2004. Chemical reactions among indoor pollutants: What we've learned in the new millennium. Indoor air 14:184-194.
    Weschler CJ, Nazaroff WW. 2008. Semivolatile organic compounds in indoor environments. Atmospheric Environment 42:9018-9040.
    Weschler CJ, Salthammer T, Fromme H. 2008. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmospheric Environment 42:1449-1460.
    Weschler CJ, Nazaroff WW. 2010. Svoc partitioning between the gas phase and settled dust indoors. Atmospheric Environment 44:3609-3620.
    Wu M, Xu L, Teng C, Xiao X, Hu W, Chen J, et al. 2019. Involvement of oxidative stress in di-2-ethylhexyl phthalate (dehp)-induced apoptosis of mouse ne-4c neural stem cells. Neurotoxicology 70:41-47.
    Wu Y, Eichler CM, Leng W, Cox SS, Marr LC, Little JC. 2017. Adsorption of phthalates on impervious indoor surfaces. Environmental science & technology 51:2907-2913.
    Wu Y, Eichler CM, Cao J, Benning J, Olson A, Chen S, et al. 2018. Particle/gas partitioning of phthalates to organic and inorganic airborne particles in the indoor environment. Environmental science & technology 52:3583-3590.
    Xie Z, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W. 2007. Occurrence and air− sea exchange of phthalates in the arctic. Environmental Science & Technology 41:4555-4560.
    Xu Y, Little JC. 2006. Predicting emissions of svocs from polymeric materials and their interaction with airborne particles. Environmental science & technology 40:456-461.
    Yanagi U, Yoshino H, Hasegawa K, Kagi N, Azuma K, Shinohara N, et al. 2014. Indoor airborne, settled and adhesive fungi in water-damaged houses after giant tsunami. Indoor air.
    Zhang Q, Lu X-M, Zhang X-L, Sun Y-G, Zhu D-M, Wang B-L, et al. 2013. Levels of phthalate esters in settled house dust from urban dwellings with young children in nanjing, china. Atmospheric environment 69:258-264.
    李家偉. 2008. 室內鄰苯二甲酸酯類暴露與兒童健康之相關性---室內含鄰苯二甲酸酯類之民生消費品逸散特性及影響因子之研究 (ii).
    紀碧芳. 2003. 受黴菌污染建材上之黴菌種類研究. 成功大學環境醫學研究所學位論文:1-88.
    涂益銘. 2017. 台灣南部大氣中活性真, 細菌濃度之時間分布. 成功大學環境醫學研究所學位論文:1-97.
    蘇慧貞. 2013. 評估氣候變遷對亞熱帶室內環境的衝擊與調適策略可行性分析.

    下載圖示 校內:2024-07-25公開
    校外:2024-07-25公開
    QR CODE