簡易檢索 / 詳目顯示

研究生: 蕭宏鎮
Zheng, Siew-Hoong
論文名稱: 評估添加氟化鋰對鋰鑭鋯氧薄膜在鋰離子補償和抑制表面碳酸鋰形成的效益
Investigation of LiF incorporation into LLZO sputter thin film toward Li+ compensation and suppression of surface Li2CO3 formation
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 114
中文關鍵詞: 鋰鑭鋯氧化物石榴石型固態電解質氟化鋰射頻磁控濺鍍
外文關鍵詞: LLZO, garnet-type electrolyte, LiF, RF magnetron sputtering
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰鑭鋯氧化物(Li7La3Zr2O12,LLZO)薄膜採用射頻(RF)磁控濺鍍方法沉積時,通常會遇到沉積過程中鋰損失和保存過程中表面Li2CO3形成的問題。本研究探討了在LLZO薄膜上透過射頻濺鍍沉積LiF薄膜對LLZO薄膜的影響。我們發現,LiF濺射可以促進LLZO表面的鋰化,補償LLZO薄膜中的鋰缺失。此外,透過後退火處理,較緻密的LiF層形成可以幫助抑制LLZO表面Li2CO3 的再形成,起到保護層的作用。在進一步研究中,我們探討了加入額外的氧氣作爲濺鍍LiF時的工作氣體時,對LiF薄膜造成的影響。研究中發現通過調節LiF濺射參數,如基板溫度、氧氣流速和濺射時間,我們可以透過濺鍍LiF,沉積可作爲保護層的LiF層或是對LLZO進行氟離子參雜。綜上所述本研究為未來製備LLZO/LiF多層薄膜提供了有用的資訊。

    Thin films of Li7La3Zr2O12 (LLZO) deposited by radio-frequency (RF) magnetron sputtering typically face issues such as lithium loss during deposition and surface degradation due to the formation of Li2CO3 in air. This study investigates the effect of deposition of LiF onto LLZO thin films via RF sputtering. We found that LiF sputtering can promote lithiation on the LLZO surface, compensating for Li+ loss in the thin film. Additionally, post-annealing treatment facilitates the formation of a dense LiF layer, which helps prevent the reformation of Li2CO3 on the LLZO surface, acting as a protective layer. Furthermore, sputtering LiF under additional oxygen gas was explored. By adjusting sputtering parameters, including substrate temperature, oxygen flow rate, and sputtering time, it is possible to control whether we fabricate protective LiF layers or dope LLZO with fluorine ions. This thesis provides valuable insights for the future fabrication of repetitive LLZO/LiF multi-nanolayer thin films.

    中文摘要 i Abstract ii Acknowledgments iii Table of Contents iv List of Table vii List of Figure viii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Working mechanism of lithium-ion batteries 4 2.2 Liquid-state electrolytes 5 2.2.1 Organic solvent 6 2.2.2 Lithium salt 7 2.2.3 Challenges of liquid electrolytes in LIBs 8 2.3 Solid-state electrolytes (SSEs) 10 2.3.1 Brief introduction to SSEs 10 2.3.2 Solid polymer electrolytes (SPEs) 11 2.3.3 Sulfide-based SSEs 14 2.3.4 Oxide-based SSEs 17 2.3.4.1 Amorphous-type LixPOyNz (LiPON) 18 2.3.4.2 NASiCON-type Li1+xAlxTi2-x(PO4)3 (LATP) 20 2.3.4.3 Perovskite-type LixLayTiO3 (LLTO) 22 2.3.4.4 Garnet-type Li7La3Zr2O12 (LLZO) 22 2.4 Improve properties of LLZO through doping protocol 27 2.4.1 Cation doping 27 2.4.1.1 Li-site doping 28 2.4.1.2 La-site doping 30 2.4.1.3 Zr-site doping 31 2.4.2 Anion doping (O-site substitution ) 33 2.5 Synthesis method of LLZO 35 2.5.1 Synthesis of LLZO pellet 35 2.5.2 Synthesis of LLZO thin film 37 2.6 Multilayer deposition strategy in LLZO thin-film SSEs 39 2.7 Amorphous LLZO (a-LLZO) 40 2.8 The main interfacial issue of LLZO: Li2CO3 formation 42 2.9 Motivation 45 Chapter 3 Experimental Methods 46 3.1 Experiment process 46 3.2 Thin film deposition 47 3.2.1 Sputtering system 47 3.2.2 Limitation of sputtering power 48 3.2.3 Sputtering parameters of LLZO and LiF for multilayer deposition 49 3.2.4 Post-annealing of thin film 49 3.3 Thin film characterization 50 3.3.1 X-ray photoelectron spectroscopy (XPS) 50 3.3.2 RAMAN spectrum 51 3.3.3 Field emission scanning electron microscopy (FE-SEM) 53 3.3.4 Grazing angle X-Ray Diffraction (GIXRD) 54 Chapter 4 Result And Discussion 56 4.1 Characterization of LLZO thin film 56 4.1.1 Morphology, cross section and crystallinity before and after post-annealing 56 4.1.2 RAMAN spectra of LLZO 58 4.1.3 Surface to inner LLZO films XPS investigation 59 4.2 Characterization of LLZO/LiF (OF) thin film 63 4.2.1 Post-annealing effect on microstructure of OF films 63 4.2.2 Study of element distribution after post-annealing OF film 66 4.3 The impact of substrate temperature on LiF sputtering in argon/oxygen mixing gas 69 4.3.1 Cross section by SEM 69 4.3.2 Depth evolution by XPS 70 4.4 Effect of oxygen flow rate on LiF sputtering on LLZO 74 4.4.1 Surface conditions after and before post annealing 74 4.4.2 XPS analysis of inner layer 75 Chapter 5 Conclusion 77 References 79

    [1] S. Yi, K. Raza Abbasi, K. Hussain, A. Albaker, and R. Alvarado, "Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help?," Gondwana Research, vol. 117, pp. 41-55, 2023/05/01/ 2023, doi: https://doi.org/10.1016/j.gr.2022.12.021.
    [2] "What is Energy Transition?" S&P GLOBAL. https://www.spglobal.com/en/research-insights/articles/what-is-energy-transition (accessed 2024).
    [3] E. Zarate-Perez, E. Rosales-Asensio, A. González-Martínez, M. de Simón-Martín, and A. Colmenar-Santos, "Battery energy storage performance in microgrids: A scientific mapping perspective," Energy Reports, vol. 8, pp. 259-268, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.egyr.2022.06.116.
    [4] A. I. Stan, M. Swierczynski, D. I. Stroe, R. Teodorescu, S. J. Andreasen, and K. Moth, "A comparative study of lithium ion to lead acid batteries for use in UPS applications," in 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), 28 Sept.-2 Oct. 2014 2014, pp. 1-8, doi: 10.1109/INTLEC.2014.6972152.
    [5] L. Zhang, X. Li, M. Yang, and W. Chen, "High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective," Energy Storage Materials, vol. 41, pp. 522-545, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.ensm.2021.06.033.
    [6] S. Ma et al., "Temperature effect and thermal impact in lithium-ion batteries: A review," Progress in Natural Science: Materials International, vol. 28, no. 6, pp. 653-666, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.pnsc.2018.11.002.
    [7] V. Viallet, "Handbook of Solid State Batteries, Edited by Nancy J. Dudney, William C. West and Jagjit Nanda. World Scientific, 2015. Pp. 836. Price (hardcover) GBP 155.00. ISBN 9789814651899," Journal of Applied Crystallography, vol. 49, no. 6, pp. 2279-2282, 2016, doi: https://doi.org/10.1107/S1600576716016241.
    [8] J. Nanda, C. Wang, and P. Liu, "Frontiers of solid-state batteries," MRS Bulletin, vol. 43, no. 10, pp. 740-745, 2018, doi: https://doi.org/1h0.1557/mrs.2018.234.
    [9] E. Rangasamy, J. Wolfenstine, and J. Sakamoto, "The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12," Solid State Ionics, vol. 206, pp. 28-32, 2012, doi: https://doi.org/10.1016/j.ssi.2011.10.022.
    [10] A. M. Nolan, Y. Zhu, X. He, Q. Bai, and Y. Mo, "Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries," Joule, vol. 2, no. 10, pp. 2016-2046, 2018/10/17/ 2018, doi: https://doi.org/10.1016/j.joule.2018.08.017.
    [11] V. Thangadurai, D. Pinzaru, S. Narayanan, and A. K. Baral, "Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage," The Journal of Physical Chemistry Letters, vol. 6, no. 2, pp. 292-299, 2015/01/15 2015, doi: 10.1021/jz501828v.
    [12] "Working of Lithium-ion Battery." https://robu.in/working-of-lithium-ion-battery/ (accessed 2024).
    [13] Y.-K. Liu, C.-Z. Zhao, J. Du, X.-Q. Zhang, A.-B. Chen, and Q. Zhang, "Research Progresses of Liquid Electrolytes in Lithium-Ion Batteries," Small, vol. 19, no. 8, p. 2205315, 2023/02/01 2023, doi: https://doi.org/10.1002/smll.202205315.
    [14] X. G. Sun et al., "New promising lithium malonatoborate salts for high voltage lithium ion batteries," Journal of Materials Chemistry A, vol. 5, no. 3, pp. 1233-1241, Jan 2017, doi: 10.1039/c6ta07757a.
    [15] V. García-Melgarejo, J. Alejandre, and E. Núñez-Rojas, "Parametrization with Explicit Water of Solvents Used in Lithium-Ion Batteries: Cyclic Carbonates and Linear Ethers," Journal of Physical Chemistry B, vol. 124, no. 23, pp. 4741-4750, Jun 2020, doi: 10.1021/acs.jpcb.0c01772.
    [16] F. Guo et al., "Experimental study on flammability limits of electrolyte solvents in lithium-ion batteries using a wick combustion method," Experimental Thermal and Fluid Science, vol. 109, Dec 2019, Art no. 109858, doi: 10.1016/j.expthermflusci.2019.109858.
    [17] J. Liu et al., "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, vol. 4, no. 3, pp. 180-186, Mar 2019, doi: 10.1038/s41560-019-0338-x.
    [18] F. Wu, H. Zhou, Y. Bai, H. L. Wang, and C. Wu, "Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes," Acs Applied Materials & Interfaces, vol. 7, no. 27, pp. 15098-15107, Jul 2015, doi: 10.1021/acsami.5b04477.
    [19] R. J. Chen, L. Zhu, F. Wu, L. Li, R. Zhang, and S. Chen, "Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries," Journal of Power Sources, vol. 245, pp. 730-738, Jan 2014, doi: 10.1016/j.jpowsour.2013.06.132.
    [20] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical Reviews, vol. 104, no. 10, pp. 4303-4417, Oct 2004, doi: 10.1021/cr030203g.
    [21] T. T. Feng, G. Z. Yang, S. Zhang, Z. Q. Xu, H. P. Zhou, and M. Q. Wu, "Low-temperature and high-voltage lithium-ion battery enabled by localized high-concentration carboxylate electrolytes," Chemical Engineering Journal, vol. 433, Apr 2022, Art no. 134138, doi: 10.1016/j.cej.2021.134138.
    [22] J. Z. Yang et al., "Dual-Salt Electrolytes to Effectively Reduce Impedance Rise of High-Nickel Lithium-Ion Batteries," Acs Applied Materials & Interfaces, vol. 13, no. 34, pp. 40502-40512, Sep 2021, doi: 10.1021/acsami.1c08478.
    [23] N. Ehteshami, L. Ibing, L. Stolz, M. Winter, and E. Paillard, "Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes," Journal of Power Sources, vol. 451, Mar 2020, Art no. 227804, doi: 10.1016/j.jpowsour.2020.227804.
    [24] Q. Y. Dong et al., "Insights into the Dual Role of Lithium Difluoro(oxalato)borate Additive in Improving the Electrochemical Performance of NMC811∥Graphite Cells," Acs Applied Energy Materials, vol. 3, no. 1, pp. 695-704, Jan 2020, doi: 10.1021/acsaem.9b01894.
    [25] D. P. Wang, Z. A. Zhang, B. Hong, and Y. Q. Lai, "Self-sacrificial organic lithium salt enhanced initial Coulombic efficiency for safer and greener lithium-ion batteries," Chemical Communications, vol. 55, no. 72, pp. 10737-10739, Sep 2019, doi: 10.1039/c9cc04904e.
    [26] R. Weber et al., "Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte," Nature Energy, vol. 4, no. 8, pp. 683-689, Aug 2019, doi: 10.1038/s41560-019-0428-9.
    [27] D. Di Lecce, L. Carbone, V. Gancitano, and J. Hassoun, "Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes," Journal of Power Sources, Article vol. 334, pp. 146-153, 2016, doi: 10.1016/j.jpowsour.2016.09.164.
    [28] Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, "Progress in electrolytes for rechargeable Li-based batteries and beyond," Green Energy and Environment, Review vol. 1, no. 1, pp. 18-42, 2016, doi: 10.1016/j.gee.2016.04.006.
    [29] S. Hess, M. Wohlfahrt-Mehrens, and M. Wachtler, "Flammability of Li-Ion battery electrolytes: Flash point and self-extinguishing time measurements," Journal of the Electrochemical Society, Article vol. 162, no. 2, pp. A3084-A3097, 2015, doi: 10.1149/2.0121502jes.
    [30] E. Erkut, S. A. Tjandra, and V. Verter, "Hazardous materials transportation," Handbooks in operations research and management science, vol. 14, pp. 539-621, 2007, doi: https://doi.org/10.1016/S0927-0507(06)14009-8.
    [31] D. Lisbona and T. Snee, "A review of hazards associated with primary lithium and lithium-ion batteries," Process safety and environmental protection, vol. 89, no. 6, pp. 434-442, 2011, doi: https://doi.org/10.1016/j.psep.2011.06.022.
    [32] T. Waldmann et al., "Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques," Journal of The Electrochemical Society, vol. 163, no. 10, p. A2149, 2016, doi: 10.1149/2.1211609jes.
    [33] D. Ren et al., "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Article vol. 228, pp. 633-644, 2018, doi: 10.1016/j.apenergy.2018.06.126.
    [34] K. Xu, A. Von Cresce, and U. Lee, "Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface," Langmuir, Article vol. 26, no. 13, pp. 11538-11543, 2010, doi: 10.1021/la1009994.
    [35] X. Su et al., "Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives," Energy Storage Materials, vol. 56, pp. 642-663, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.ensm.2023.01.044.
    [36] Y. Takeda, O. Yamamoto, and N. Imanishi, "Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes," ELECTROCHEMISTRY, vol. 84, no. 4, pp. 210-218, APR 2016, doi: 10.5796/electrochemistry.84.210.
    [37] T. Thompson et al., "Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12," ACS Energy Letters, vol. 2, no. 2, pp. 462-468, 2017, doi: https://doi.org/10.1021/acsenergylett.6b00593.
    [38] S.-W. Baek, I. Honma, J. Kim, and D. Rangappa, "Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery," Journal of Power Sources, vol. 343, pp. 22-29, 2017, doi: https://doi.org/10.1016/j.jpowsour.2017.01.030.
    [39] P. Jiang et al., "Solid‐State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective," Energy Technology, vol. 11, no. 3, p. 2201288, 2023.
    [40] N. Kamaya et al., "A lithium superionic conductor," Nat Mater, vol. 10, no. 9, pp. 682-6, Jul 31 2011, doi: 10.1038/nmat3066.
    [41] R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, "The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons," Materials Horizons, vol. 3, no. 6, pp. 487-516, 2016, doi: https://doi.org/10.1039/C6MH00218H.
    [42] A. Manthiram, X. Yu, and S. Wang, "Lithium battery chemistries enabled by solid-state electrolytes," Nature Reviews Materials, vol. 2, no. 4, pp. 1-16, 2017, doi: https://doi.org/10.1038/natrevmats.2016.103.
    [43] J. C. Bachman et al., "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction," Chemical reviews, vol. 116, no. 1, pp. 140-162, 2016, doi: https://doi.org/10.1021/acs.chemrev.5b00563.
    [44] K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, and Z. Chen, "Practical challenges hindering the development of solid state Li ion batteries," Journal of The Electrochemical Society, vol. 164, no. 7, p. A1731, 2017, doi: 10.1149/2.1571707jes.
    [45] M. Winter, B. Barnett, and K. Xu, "Before Li ion batteries," Chemical reviews, vol. 118, no. 23, pp. 11433-11456, 2018, doi: https://doi.org/10.1021/acs.chemrev.8b00422.
    [46] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, "Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects," Chem, vol. 5, no. 9, pp. 2326-2352, 2019/09/12/ 2019, doi: https://doi.org/10.1016/j.chempr.2019.05.009.
    [47] G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, and Y. Meng, "Polymer-Based Solid Electrolytes: Material Selection, Design, and Application," Advanced Functional Materials, vol. 31, no. 9, p. 2007598, 2021/02/01 2021, doi: https://doi.org/10.1002/adfm.202007598.
    [48] Y. Li et al., "Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte," Journal of Power Sources, vol. 397, pp. 95-101, Sep 2018, doi: 10.1016/j.jpowsour.2018.05.050.
    [49] Y. H. Xu et al., "Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials," Progress in Polymer Science, vol. 80, pp. 163-182, May 2018, doi: 10.1016/j.progpolymsci.2018.01.006.
    [50] R. Tan et al., "Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature," Acs Applied Materials & Interfaces, vol. 8, no. 45, pp. 31273-31280, Nov 2016, doi: 10.1021/acsami.6b09008.
    [51] Prateek, V. K. Thakur, and R. K. Gupta, "Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects," Chemical Reviews, vol. 116, no. 7, pp. 4260-4317, Apr 2016, doi: 10.1021/acs.chemrev.5b00495.
    [52] P. Hu, J. C. Chai, Y. L. Duan, Z. H. Liu, G. L. Cui, and L. Q. Chen, "Progress in nitrile-based polymer electrolytes for high performance lithium batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10070-10083, 2016, doi: 10.1039/c6ta02907h.
    [53] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, "Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications," Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, Apr 2014, doi: 10.1016/j.progpolymsci.2013.07.006.
    [54] Y. S. Zhu, S. Y. Xiao, Y. Shi, Y. Q. Yang, Y. Y. Hou, and Y. P. Wu, "A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries," Advanced Energy Materials, vol. 4, no. 1, Jan 2014, Art no. 1300647, doi: 10.1002/aenm.201300647.
    [55] M. S. Su'ait, A. Ahmad, H. Hamzah, and M. Y. A. Rahman, "Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte," Electrochimica Acta, vol. 57, pp. 123-131, Dec 2011, doi: 10.1016/j.electacta.2011.06.015.
    [56] Z. G. Xue, D. He, and X. L. Xie, "Poly(ethylene oxide)-based electrolytes for lithium-ion batteries," Journal of Materials Chemistry A, vol. 3, no. 38, pp. 19218-19253, 2015, doi: 10.1039/c5ta03471j.
    [57] A. Manuel Stephan, "Review on gel polymer electrolytes for lithium batteries," European Polymer Journal, vol. 42, no. 1, pp. 21-42, 2006/01/01/ 2006, doi: https://doi.org/10.1016/j.eurpolymj.2005.09.017.
    [58] S. Liu et al., "Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)–Li (CF3SO2) 2N/Li," Journal of Power Sources, vol. 195, no. 19, pp. 6847-6853, 2010, doi: https://doi.org/10.1016/j.jpowsour.2010.04.027.
    [59] F. Croce, G. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries," Nature, vol. 394, no. 6692, pp. 456-458, 1998, doi: https://doi.org/10.1038/28818.
    [60] I. Gurevitch et al., "Nanocomposites of titanium dioxide and polystyrene-poly (ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries," Journal of The Electrochemical Society, vol. 160, no. 9, p. A1611, 2013, doi: http://dx.doi.org/10.1149/2.117309jes.
    [61] K. Fu et al., "Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries," Proceedings of the National Academy of Sciences, vol. 113, no. 26, pp. 7094-7099, 2016, doi: https://doi.org/10.1073/pnas.1600422113.
    [62] D. Lin et al., "High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)," Nano Letters, vol. 16, no. 1, pp. 459-465, 2016/01/13 2016, doi: 10.1021/acs.nanolett.5b04117.
    [63] D. R. Sadoway, "Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries," Journal of power sources, vol. 129, no. 1, pp. 1-3, 2004, doi: https://doi.org/10.1016/J.JPOWSOUR.2003.11.016.
    [64] Q. Ma et al., "Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion," Angewandte Chemie International Edition, vol. 55, no. 7, pp. 2521-2525, 2016/02/12 2016, doi: https://doi.org/10.1002/anie.201509299.
    [65] Q. Zhang, K. Liu, F. Ding, and X. Liu, "Recent advances in solid polymer electrolytes for lithium batteries," Nano Research, vol. 10, no. 12, pp. 4139-4174, 2017/12/01 2017, doi: 10.1007/s12274-017-1763-4.
    [66] J. Wu, S. Liu, F. Han, X. Yao, and C. Wang, "Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes," Advanced Materials, vol. 33, no. 6, p. 2000751, 2021, doi: https://doi.org/10.1002/adma.202000751.
    [67] F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, "High lithium ion conducting glass-ceramics in the system Li2S–P2S5," Solid State Ionics, vol. 177, no. 26-32, pp. 2721-2725, 2006, doi: http://dx.doi.org/10.1016/j.ssi.2006.04.017.
    [68] C. H. Wang, J. W. Liang, Y. Zhao, M. T. Zheng, X. N. Li, and X. L. Sun, "All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design," Energy & Environmental Science, vol. 14, no. 5, pp. 2577-2619, May 2021, doi: 10.1039/d1ee00551k.
    [69] R. Kanno and M. Murayama, "Lithium Ionic Conductor Thio-LISICON: The Li2 S  ­ GeS2 ­  P 2 S 5 System," Journal of The Electrochemical Society, vol. 148, no. 7, p. A742, 2001/06/05 2001, doi: 10.1149/1.1379028.
    [70] T. Inada et al., "All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON," Journal of Power Sources, vol. 194, no. 2, pp. 1085-1088, 2009/12/01/ 2009, doi: https://doi.org/10.1016/j.jpowsour.2009.06.100.
    [71] M. Murayama et al., "Synthesis of New Lithium Ionic Conductor Thio-LISICON—Lithium Silicon Sulfides System," Journal of Solid State Chemistry, vol. 168, no. 1, pp. 140-148, 2002/10/01/ 2002, doi: https://doi.org/10.1006/jssc.2002.9701.
    [72] M. Murayama, N. Sonoyama, A. Yamada, and R. Kanno, "Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system," Solid State Ionics, vol. 170, no. 3, pp. 173-180, 2004/05/31/ 2004, doi: https://doi.org/10.1016/j.ssi.2004.02.025.
    [73] M. Murayama, R. Kanno, Y. Kawamoto, and T. Kamiyama, "Structure of the thio-LISICON, Li4GeS4," Solid State Ionics, vol. 154-155, pp. 789-794, 2002/12/02/ 2002, doi: https://doi.org/10.1016/S0167-2738(02)00492-7.
    [74] N. Kamaya et al., "A lithium superionic conductor," Nature Materials, vol. 10, no. 9, pp. 682-686, 2011/09/01 2011, doi: 10.1038/nmat3066.
    [75] S. Hori et al., "Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2−δS12 (M = Si, Sn)," Faraday Discussions, 10.1039/C4FD00143E vol. 176, no. 0, pp. 83-94, 2014, doi: 10.1039/C4FD00143E.
    [76] A. Kuhn, V. Duppel, and B. V. Lotsch, "Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes," Energy & Environmental Science, 10.1039/C3EE41728J vol. 6, no. 12, pp. 3548-3552, 2013, doi: 10.1039/C3EE41728J.
    [77] Y. Kato, R. Saito, M. Sakano, A. Mitsui, M. Hirayama, and R. Kanno, "Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn)," Journal of Power Sources, vol. 271, pp. 60-64, 2014/12/20/ 2014, doi: https://doi.org/10.1016/j.jpowsour.2014.07.159.
    [78] O. Kwon et al., "Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12," Journal of Materials Chemistry A, 10.1039/C4TA05231E vol. 3, no. 1, pp. 438-446, 2015, doi: 0.1039/C4TA05231E.
    [79] D. A. Weber et al., "Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12," Chemistry of Materials, vol. 28, no. 16, pp. 5905-5915, 2016/08/23 2016, doi: 10.1021/acs.chemmater.6b02424.
    [80] Y. Mo, S. P. Ong, and G. Ceder, "First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material," Chemistry of Materials, vol. 24, no. 1, pp. 15-17, 2012/01/10 2012, doi: 10.1021/cm203303y.
    [81] Y. Zhu and Y. Mo, "Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes," Angewandte Chemie International Edition, vol. 59, no. 40, pp. 17472-17476, 2020/09/28 2020, doi: https://doi.org/10.1002/anie.202007621.
    [82] T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, and C. Masquelier, "Fundamentals of inorganic solid-state electrolytes for batteries," Nature materials, vol. 18, no. 12, pp. 1278-1291, 2019, doi: https://doi.org/10.1038/s41563-019-0431-3.
    [83] T. Krauskopf, F. H. Richter, W. G. Zeier, and J. r. Janek, "Physicochemical concepts of the lithium metal anode in solid-state batteries," Chemical reviews, vol. 120, no. 15, pp. 7745-7794, 2020, doi: https://doi.org/10.1021/acs.chemrev.0c00431.
    [84] B. Wu et al., "Functional materials for powering and implementing next-generation miniature sensors," Materials Today, vol. 69, pp. 333-354, 2023/10/01/ 2023, doi: https://doi.org/10.1016/j.mattod.2023.09.001.
    [85] Z. Zhang et al., "New horizons for inorganic solid state ion conductors," Energy & Environmental Science, vol. 11, no. 8, pp. 1945-1976, 2018, doi: https://doi.org/10.1039/C8EE01053F.
    [86] M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, and J. L. M. Rupp, "Processing thin but robust electrolytes for solid-state batteries," Nature Energy, vol. 6, no. 3, pp. 227-239, 2021/03/01 2021, doi: 10.1038/s41560-020-00759-5.
    [87] Y. Zhu, J. C. Gonzalez-Rosillo, M. Balaish, Z. D. Hood, K. J. Kim, and J. L. M. Rupp, "Lithium-film ceramics for solid-state lithionic devices," Nature Reviews Materials, vol. 6, no. 4, pp. 313-331, 2021/04/01 2021, doi: 10.1038/s41578-020-00261-0.
    [88] J. Zhao et al., "Current challenges and perspectives of garnet-based solid-state electrolytes," Journal of Energy Storage, vol. 68, p. 107693, 2023/09/15/ 2023, doi: https://doi.org/10.1016/j.est.2023.107693.
    [89] J. B. Bates et al., "Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries," Journal of Power Sources, vol. 43, no. 1, pp. 103-110, 1993/03/15/ 1993, doi: https://doi.org/10.1016/0378-7753(93)80106-Y.
    [90] X. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, "A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride," Journal of The Electrochemical Society, vol. 144, no. 2, p. 524, 1997/02/01 1997, doi: 10.1149/1.1837443.
    [91] Y. Su et al., "LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering," Solid State Ionics, vol. 282, pp. 63-69, 2015/12/01/ 2015, doi: https://doi.org/10.1016/j.ssi.2015.09.022.
    [92] Y. Hamon et al., "Influence of sputtering conditions on ionic conductivity of LiPON thin films," Solid State Ionics, vol. 177, no. 3, pp. 257-261, 2006/01/31/ 2006, doi: https://doi.org/10.1016/j.ssi.2005.10.021.
    [93] J. B. Bates et al., "Electrical properties of amorphous lithium electrolyte thin films," Solid State Ionics, vol. 53-56, pp. 647-654, 1992/07/01/ 1992, doi: https://doi.org/10.1016/0167-2738(92)90442-R.
    [94] D. Ruzmetov et al., "Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries," Nano Letters, vol. 12, no. 1, pp. 505-511, 2012/01/11 2012, doi: 10.1021/nl204047z.
    [95] A. C. Kozen, A. J. Pearse, C.-F. Lin, M. Noked, and G. W. Rubloff, "Atomic Layer Deposition of the Solid Electrolyte LiPON," Chemistry of Materials, vol. 27, no. 15, pp. 5324-5331, 2015/08/11 2015, doi: 10.1021/acs.chemmater.5b01654.
    [96] W. C. West et al., "Reduction of charge-transfer resistance at the solid electrolyte – electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source," Journal of Power Sources, vol. 312, pp. 116-122, 2016/04/30/ 2016, doi: https://doi.org/10.1016/j.jpowsour.2016.02.034.
    [97] N. Kuwata, N. Iwagami, Y. Matsuda, Y. Tanji, and J. Kawamura, "Thin Film Batteries with Li3PO4 Solid Electrolyte Fabricated by Pulsed Laser Deposition," ECS Transactions, vol. 16, no. 26, p. 53, 2009/03/20 2009, doi: 10.1149/1.3111821.
    [98] N. Kuwata, N. Iwagami, Y. Tanji, Y. Matsuda, and J. Kawamura, "Characterization of Thin-Film Lithium Batteries with Stable Thin-Film Li3PO4 Solid Electrolytes Fabricated by ArF Excimer Laser Deposition," Journal of The Electrochemical Society, vol. 157, no. 4, p. A521, 2010/03/11 2010, doi: 10.1149/1.3306339.
    [99] Y. Zhu, X. He, and Y. Mo, "First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries," Journal of Materials Chemistry A, 10.1039/C5TA08574H vol. 4, no. 9, pp. 3253-3266, 2016, doi: 10.1039/C5TA08574H.
    [100] M. M. Ioanniti, F. Hu, and W. E. Tenhaeff, "Energy-dense Li metal anodes enabled by thin film electrolytes," Journal of Vacuum Science & Technology A, vol. 38, no. 6, p. 060801, 2020, doi: 10.1116/6.0000430.
    [101] J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, "Fast Na+-ion transport in skeleton structures," Materials Research Bulletin, vol. 11, no. 2, pp. 203-220, 1976/02/01/ 1976, doi: https://doi.org/10.1016/0025-5408(76)90077-5.
    [102] H. Y. P. Hong, "Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12," Materials Research Bulletin, vol. 11, no. 2, pp. 173-182, 1976/02/01/ 1976, doi: https://doi.org/10.1016/0025-5408(76)90073-8.
    [103] D. Petit, P. Colomban, G. Collin, and J. P. Boilot, "Fast ion transport in LiZr2(PO4)3: Structure and conductivity," Materials Research Bulletin, vol. 21, no. 3, pp. 365-371, 1986/03/01/ 1986, doi: https://doi.org/10.1016/0025-5408(86)90194-7.
    [104] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. y. Adachi, "Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate," Journal of The Electrochemical Society, vol. 137, no. 4, p. 1023, 1990/04/01 1990, doi: 10.1149/1.2086597.
    [105] X. M. Wu, S. Chen, F. R. Mai, J. H. Zhao, and Z. Q. He, "Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films," Ionics, vol. 19, no. 4, pp. 589-593, 2013/04/01 2013, doi: 10.1007/s11581-012-0788-7.
    [106] D. Popovici, H. Nagai, S. Fujishima, and J. Akedo, "Preparation of Lithium Aluminum Titanium Phosphate Electrolytes Thick Films by Aerosol Deposition Method," Journal of the American Ceramic Society, vol. 94, no. 11, pp. 3847-3850, 2011/11/01 2011, doi: https://doi.org/10.1111/j.1551-2916.2011.04551.x.
    [107] Q. Ling et al., "Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte," Materials Letters, vol. 169, pp. 42-45, 2016/04/15/ 2016, doi: https://doi.org/10.1016/j.matlet.2016.01.089.
    [108] G. Tan, F. Wu, L. Li, Y. Liu, and R. Chen, "Magnetron Sputtering Preparation of Nitrogen-Incorporated Lithium–Aluminum–Titanium Phosphate Based Thin Film Electrolytes for All-Solid-State Lithium Ion Batteries," The Journal of Physical Chemistry C, vol. 116, no. 5, pp. 3817-3826, 2012/02/09 2012, doi: 10.1021/jp207120s.
    [109] H. Chen, H. Tao, X. Zhao, and Q. Wu, "Fabrication and ionic conductivity of amorphous Li–Al–Ti–P–O thin film," Journal of Non-Crystalline Solids, vol. 357, no. 16, pp. 3267-3271, 2011/08/01/ 2011, doi: https://doi.org/10.1016/j.jnoncrysol.2011.05.023.
    [110] P. Knauth, "Inorganic solid Li ion conductors: An overview," Solid State Ionics, vol. 180, no. 14, pp. 911-916, 2009/06/25/ 2009, doi: https://doi.org/10.1016/j.ssi.2009.03.022.
    [111] H.-S. Kim, Y. Oh, K. H. Kang, J. H. Kim, J. Kim, and C. S. Yoon, "Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery," ACS Applied Materials & Interfaces, vol. 9, no. 19, pp. 16063-16070, 2017/05/17 2017, doi: 10.1021/acsami.6b15305.
    [112] K. Kitaoka, H. Kozuka, T. Hashimoto, and T. Yoko, "Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol–gel method," Journal of Materials Science, vol. 32, no. 8, pp. 2063-2070, 1997/04/01 1997, doi: 10.1023/A:1018566620564.
    [113] S. Stramare, V. Thangadurai, and W. Weppner, "Lithium Lanthanum Titanates:  A Review," Chemistry of Materials, vol. 15, no. 21, pp. 3974-3990, 2003/10/01 2003, doi: 10.1021/cm0300516.
    [114] Y. Inaguma et al., "High ionic conductivity in lithium lanthanum titanate," Solid State Communications, vol. 86, no. 10, pp. 689-693, 1993/06/01/ 1993, doi: https://doi.org/10.1016/0038-1098(93)90841-A.
    [115] A. Mei et al., "Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte," Electrochimica Acta, vol. 55, no. 8, pp. 2958-2963, 2010/03/01/ 2010, doi: https://doi.org/10.1016/j.electacta.2010.01.036.
    [116] O. Bohnke, J. Emery, and J.-L. Fourquet, "Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3," Solid State Ionics, vol. 158, no. 1, pp. 119-132, 2003/02/01/ 2003, doi: https://doi.org/10.1016/S0167-2738(02)00720-8.
    [117] S. Kim et al., "Low temperature synthesis and ionic conductivity of the epitaxial Li0.17La0.61TiO3 film electrolyte," CrystEngComm, 10.1039/C3CE42003E vol. 16, no. 6, pp. 1044-1049, 2014, doi: 10.1039/C3CE42003E.
    [118] S.-i. Furusawa, H. Tabuchi, T. Sugiyama, S. Tao, and J. T. S. Irvine, "Ionic conductivity of amorphous lithium lanthanum titanate thin film," Solid State Ionics, vol. 176, no. 5, pp. 553-558, 2005/02/14/ 2005, doi: https://doi.org/10.1016/j.ssi.2004.08.020.
    [119] J.-K. Ahn and S.-G. Yoon, "Characteristics of Amorphous Lithium Lanthanum Titanate Electrolyte Thin Films Grown by PLD for Use in Rechargeable Lithium Microbatteries," Electrochemical and Solid-State Letters, vol. 8, no. 2, p. A75, 2004/12/14 2005, doi: 10.1149/1.1843571.
    [120] T. Ohnishi and K. Takada, "Synthesis and orientation control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition," Solid State Ionics, vol. 228, pp. 80-82, 2012/11/30/ 2012, doi: https://doi.org/10.1016/j.ssi.2012.10.001.
    [121] J. Z. Lee, Z. Wang, H. L. Xin, T. A. Wynn, and Y. S. Meng, "Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries," Journal of The Electrochemical Society, vol. 164, no. 1, p. A6268, 2016/12/16 2017, doi: 10.1149/2.0411701jes.
    [122] S. Ulusoy, S. Gulen, G. Aygun, L. Ozyuzer, and M. Ozdemir, "Characterization of thin film Li0.5La0.5Ti1−xAlxO3 electrolyte for all-solid-state Li-ion batteries," Solid State Ionics, vol. 324, pp. 226-232, 2018/10/15/ 2018, doi: https://doi.org/10.1016/j.ssi.2018.07.005.
    [123] Y. Xiong, H. Tao, J. Zhao, H. Cheng, and X. Zhao, "Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering," Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1910-1914, 2011/02/03/ 2011, doi: https://doi.org/10.1016/j.jallcom.2010.10.086.
    [124] T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvåg, "Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition," Journal of Materials Chemistry, 10.1039/B923490J vol. 20, no. 14, pp. 2877-2881, 2010, doi: 10.1039/B923490J.
    [125] C.-L. Li, B. Zhang, and Z.-W. Fu, "Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation," Thin Solid Films, vol. 515, no. 4, pp. 1886-1892, 2006/12/05/ 2006, doi: https://doi.org/10.1016/j.tsf.2006.07.026.
    [126] Z. Zheng, S. Song, and Y. Wang, "Sol-gel-processed amorphous lithium ion electrolyte thin films: Structural evolution, theoretical considerations, and ion transport processes," Solid State Ionics, vol. 287, pp. 60-70, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.ssi.2016.02.006.
    [127] J. Xu, J. Ueda, and S. Tanabe, "Toward tunable and bright deep-red persistent luminescence of Cr 3+ in garnets," Journal of the American Ceramic Society, vol. 100, 04/24 2017, doi: 10.1111/jace.14942.
    [128] J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure," Journal of solid state chemistry, vol. 182, no. 8, pp. 2046-2052, 2009, doi: https://doi.org/10.1016/j.jssc.2009.05.020.
    [129] A. J. Samson, K. Hofstetter, S. Bag, and V. Thangadurai, "A bird's-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries," Energy & Environmental Science, vol. 12, no. 10, pp. 2957-2975, 2019, doi: https://doi.org/10.1039/C9EE01548E.
    [130] J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12," Chemistry letters, vol. 40, no. 1, pp. 60-62, 2011, doi: https://doi.org/10.1246/cl.2011.60.
    [131] R. Jalem et al., "Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12," Chemistry of Materials, vol. 25, no. 3, pp. 425-430, 2013/02/12 2013, doi: 10.1021/cm303542x.
    [132] J. Percival and P. R. Slater, "Identification of the Li sites in the Li ion conductor, Li6SrLa2Nb2O12, through neutron powder diffraction studies," Solid State Communications, vol. 142, no. 6, pp. 355-357, 2007/05/01/ 2007, doi: https://doi.org/10.1016/j.ssc.2007.02.036.
    [133] F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang, "Origin of the phase transition in lithium garnets," The Journal of Physical Chemistry C, vol. 122, no. 4, pp. 1963-1972, 2018, doi: http://dx.doi.org/10.1021/acs.jpcc.7b10911.
    [134] W. G. Zeier, "Structural limitations for optimizing garnet-type solid electrolytes: a perspective," Dalton Transactions, vol. 43, no. 43, pp. 16133-16138, 2014.
    [135] M. Klenk and W. Lai, "Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O7," Physical Chemistry Chemical Physics, 10.1039/C4CP05690F vol. 17, no. 14, pp. 8758-8768, 2015, doi: 10.1039/C4CP05690F.
    [136] A. K. Baral, S. Narayanan, F. Ramezanipour, and V. Thangadurai, "Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy," Physical Chemistry Chemical Physics, 10.1039/C4CP00418C vol. 16, no. 23, pp. 11356-11365, 2014, doi: 10.1039/C4CP00418C.
    [137] N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the structural phase transition in Li 7La 3Zr 2O 12," Physical Review Letters, Article vol. 109, no. 20, 2012, Art no. 205702, doi: 10.1103/PhysRevLett.109.205702.
    [138] K. Meier, T. Laino, and A. Curioni, "Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations," The Journal of Physical Chemistry C, vol. 118, no. 13, pp. 6668-6679, 2014/04/03 2014, doi: 10.1021/jp5002463.
    [139] B. Koch and M. Vogel, "Lithium ionic jump motion in the fast solid ion conductor Li5La3Nb2O12," Solid State Nuclear Magnetic Resonance, vol. 34, no. 1, pp. 37-43, 2008/07/01/ 2008, doi: https://doi.org/10.1016/j.ssnmr.2008.03.002.
    [140] A. Logéat et al., "From order to disorder: The structure of lithium-conducting garnets Li7−xLa3TaxZr2−xO12 (x=0–2)," Solid State Ionics, vol. 206, pp. 33-38, 2012/01/05/ 2012, doi: https://doi.org/10.1016/j.ssi.2011.10.023.
    [141] C. A. Geiger et al., "Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor," Inorganic Chemistry, vol. 50, no. 3, pp. 1089-1097, 2011/02/07 2011, doi: 10.1021/ic101914e.
    [142] L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, "First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets," Chemistry of Materials, Article vol. 27, no. 11, pp. 4040-4047, 2015, doi: 10.1021/acs.chemmater.5b01023.
    [143] L. Zhuang et al., "Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics," Ceramics International, Article vol. 47, no. 16, pp. 22768-22775, 2021, doi: 10.1016/j.ceramint.2021.04.295.
    [144] S. Qin, X. Zhu, Y. Jiang, M. e. Ling, Z. Hu, and J. Zhu, "Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity," Applied Physics Letters, vol. 112, no. 11, p. 113901, 2018, doi: 10.1063/1.5019179.
    [145] R. Wagner et al., "Fast Li-Ion-Conducting Garnet-Related Li7-3xFexLa3Zr2O12 with Uncommon I4-3d Structure," Chemistry of Materials, Article vol. 28, no. 16, pp. 5943-5951, 2016, doi: 10.1021/acs.chemmater.6b02516.
    [146] X. Xiang et al., "Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12," Journal of the European Ceramic Society, Article vol. 40, no. 8, pp. 3065-3071, 2020, doi: 10.1016/j.jeurceramsoc.2020.02.054.
    [147] J. F. Wu et al., "Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity," ACS Applied Materials and Interfaces, Article vol. 9, no. 2, pp. 1542-1552, 2017, doi: 10.1021/acsami.6b13902.
    [148] H. Xie, J. A. Alonso, Y. Li, M. T. Fernández-Díaz, and J. B. Goodenough, "Lithium distribution in aluminum-free cubic Li7La 3Zr2O12," Chemistry of Materials, Article vol. 23, no. 16, pp. 3587-3589, 2011, doi: 10.1021/cm201671k.
    [149] D. Rettenwander et al., "The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets," Journal of Solid State Chemistry, vol. 230, pp. 266-271, 2015/10/01/ 2015, doi: https://doi.org/10.1016/j.jssc.2015.01.016.
    [150] A. Kuhn, V. Epp, G. Schmidt, S. Narayanan, V. Thangadurai, and M. Wilkening, "Spin-alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure," Journal of Physics: Condensed Matter, vol. 24, no. 3, p. 035901, 2011, doi: 10.1088/0953-8984/24/3/035901.
    [151] K. Hayamizu, Y. Matsuda, M. Matsui, and N. Imanishi, "Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method," Solid State Nuclear Magnetic Resonance, vol. 70, pp. 21-27, 2015/09/01/ 2015, doi: https://doi.org/10.1016/j.ssnmr.2015.05.002.
    [152] M. Abdulai, K. B. Dermenci, and S. Turan, "Lanthanide doping of Li7La3-xMxZr2O12 (M=Sm, Dy, Er, Yb; x=0.1–1.0) and dopant size effect on the electrochemical properties," Ceramics International, vol. 47, no. 12, pp. 17034-17040, 2021/06/15/ 2021, doi: https://doi.org/10.1016/j.ceramint.2021.03.010.
    [153] S. Song et al., "Roles of Alkaline Earth Ions in Garnet-Type Superionic Conductors," ChemElectroChem, vol. 4, no. 2, pp. 266-271, 2017/02/01 2017, doi: https://doi.org/10.1002/celc.201600639.
    [154] S. P. Kammampata, R. H. Basappa, T. Ito, H. Yamada, and V. Thangadurai, "Microstructural and Electrochemical Properties of Alkaline Earth Metal-Doped Li Garnet-Type Solid Electrolytes Prepared by Solid-State Sintering and Spark Plasma Sintering Methods," ACS Applied Energy Materials, vol. 2, no. 3, pp. 1765-1773, 2019/03/25 2019, doi: 10.1021/acsaem.8b01899.
    [155] L. Ni, Z. Wu, and C. Zhang, "Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes," Materials, vol. 14, no. 7, doi: 10.3390/ma14071671.
    [156] L. Yang et al., "Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte," Ceramics International, Article vol. 46, no. 8, pp. 10917-10924, 2020, doi: 10.1016/j.ceramint.2020.01.106.
    [157] X. Liang et al., "High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO," Applied Physics A, vol. 128, no. 1, p. 4, 2021/12/04 2021, doi: 10.1007/s00339-021-05128-x.
    [158] T. Wang et al., "Processing and Enhanced Electrochemical Properties of Li7La3Zr2−xTixO12 Solid Electrolyte by Chemical Co-precipitation," Journal of Electronic Materials, vol. 49, no. 8, pp. 4910-4915, 2020/08/01 2020, doi: 10.1007/s11664-020-08221-8.
    [159] X. Cheng, J. Huang, W. Qiang, and B. Huang, "Synthesis of mixed ionic and electronic conducting garnet with doping of transition elements (Fe, Co, Ni)," Ceramics International, vol. 46, no. 3, pp. 3731-3737, 2020/02/15/ 2020, doi: https://doi.org/10.1016/j.ceramint.2019.10.094.
    [160] C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, "Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets," Journal of Power Sources, vol. 240, pp. 18-25, 2013/10/15/ 2013, doi: https://doi.org/10.1016/j.jpowsour.2013.03.166.
    [161] L. Cai, W. Zhao-Yin, and R. Kun, "High ion conductivity in garnet-type F-doped Li7La3Zr2O12," 无机材料学报, vol. 30, no. 9, pp. 995-1001, 2015. [Online]. Available: https://doi.org/10.15541/jim20150163.
    [162] S. R. Yeandel, B. J. Chapman, P. R. Slater, and P. Goddard, "Structure and Lithium-Ion Dynamics in Fluoride-Doped Cubic Li7La3Zr2O12 (LLZO) Garnet for Li Solid-State Battery Applications," The Journal of Physical Chemistry C, vol. 122, no. 49, pp. 27811-27819, 2018/12/13 2018, doi: 10.1021/acs.jpcc.8b07704.
    [163] Y. Yang and H. Zhu, "Effects of F and Cl Doping in Cubic Li7La3Zr2O12 Solid Electrolyte: A First-Principles Investigation," ACS Applied Energy Materials, vol. 5, no. 12, pp. 15086-15092, 2022/12/26 2022, doi: 10.1021/acsaem.2c02747.
    [164] B. Dong et al., "Halogenation of Li7La3Zr2O12 solid electrolytes: a combined solid-state NMR, computational and electrochemical study," Journal of Materials Chemistry A, vol. 10, no. 20, pp. 11172-11185, May 2022, doi: 10.1039/d1ta07309e.
    [165] X. N. Ma and Y. L. Xu, "Efficient Anion Fluoride-Doping Strategy to Enhance the Performance in Garnet-Type Solid Electrolyte Li7La3Zr2O12," Acs Applied Materials & Interfaces, vol. 14, no. 2, pp. 2939-2948, Jan 2022, doi: 10.1021/acsami.1c21951.
    [166] A. Banik, T. Famprikis, M. Ghidiu, S. Ohno, M. A. Kraft, and W. G. Zeier, "On the underestimated influence of synthetic conditions in solid ionic conductors," Chemical Science, 10.1039/D0SC06553F vol. 12, no. 18, pp. 6238-6263, 2021, doi: 10.1039/D0SC06553F.
    [167] P. Jiang et al., "Solid-State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective," Energy Technology, vol. 11, no. 3, p. 2201288, 2023, doi: https://doi.org/10.1002/ente.202201288.
    [168] A. Indurkar, R. Choudhary, K. Rubenis, and J. Locs, "Advances in sintering techniques for calcium phosphates ceramics," Materials, vol. 14, no. 20, p. 6133, 2021, doi: https://doi.org/10.3390/ma14206133.
    [169] J. Lu and Y. Li, "Perovskite‐type Li‐ion solid electrolytes: a review," Journal of Materials Science: Materials in Electronics, vol. 32, no. 8, pp. 9736-9754, 2021, doi: https://link.springer.com/article/10.1007/s10854-021-05699-8.
    [170] R. Murugan, V. Thangadurai, and W. Weppner, "Fast lithium ion conduction in garnet-type Li7La 3Zr2O12," Angewandte Chemie - International Edition, Article vol. 46, no. 41, pp. 7778-7781, 2007, doi: 10.1002/anie.200701144.
    [171] A. Lawrence, J. M. Rickman, M. P. Harmer, and A. D. Rollett, "Parsing abnormal grain growth," Acta Materialia, Article vol. 103, pp. 681-687, 2016, doi: 10.1016/j.actamat.2015.10.034.
    [172] R. H. Brugge, J. A. Kilner, and A. Aguadero, "Germanium as a donor dopant in garnet electrolytes," Solid State Ionics, Article vol. 337, pp. 154-160, 2019, doi: 10.1016/j.ssi.2019.04.021.
    [173] X. Zhang, T.-S. Oh, and J. W. Fergus, "Densification of Ta-Doped Garnet-Type Li6.75La3Zr1.75Ta0.25O12 Solid Electrolyte Materials by Sintering in a Lithium-Rich Air Atmosphere," Journal of The Electrochemical Society, vol. 166, no. 15, p. A3753, 2019/11/13 2019, doi: 10.1149/2.1031915jes.
    [174] J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, "Effect of substitution (Ta, Al, Ga) on the conductivity of Li 7La 3Zr 2O 12," Journal of Power Sources, Article vol. 206, pp. 315-319, 2012, doi: 10.1016/j.jpowsour.2012.01.131.
    [175] H. Yamada, T. Ito, and R. Hongahally Basappa, "Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering," Electrochimica Acta, Article vol. 222, pp. 648-656, 2016, doi: 10.1016/j.electacta.2016.11.020.
    [176] S. W. Baek, J. M. Lee, T. Y. Kim, M. S. Song, and Y. Park, "Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries," Journal of Power Sources, Article vol. 249, pp. 197-206, 2014, doi: 10.1016/j.jpowsour.2013.10.089.
    [177] Y. Zhang, F. Chen, R. Tu, Q. Shen, and L. Zhang, "Field assisted sintering of dense Al-substituted cubic phase Li 7La3Zr2O12 solid electrolytes," Journal of Power Sources, Article vol. 268, pp. 960-964, 2014, doi: 10.1016/j.jpowsour.2014.03.148.
    [178] H. Y. Li, B. Huang, Z. Huang, and C. A. Wang, "Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering," Ceramics International, Article vol. 45, no. 14, pp. 18115-18118, 2019, doi: 10.1016/j.ceramint.2019.05.241.
    [179] K. Tadanaga et al., "Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process," Journal of Power Sources, vol. 273, pp. 844-847, 2015/01/01/ 2015, doi: https://doi.org/10.1016/j.jpowsour.2014.09.164.
    [180] C. Loho, R. Djenadic, M. Bruns, O. Clemens, and H. Hahn, "Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries," Journal of The Electrochemical Society, vol. 164, no. 1, p. A6131, 2016, doi: 10.1149/2.0201701jes.
    [181] S. Kim, M. Hirayama, S. Taminato, and R. Kanno, "Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte," Dalton Transactions, Article vol. 42, no. 36, pp. 13112-13117, 2013, doi: 10.1039/c3dt51795k.
    [182] J. Nong, H. Xu, Z. Yu, G. Zhu, and A. Yu, "Properties and preparation of Li-La-Ti-Zr-O thin film electrolyte," Materials Letters, Article vol. 154, pp. 167-169, 2015, doi: 10.1016/j.matlet.2015.04.088.
    [183] D. J. Kalita, S. H. Lee, K. S. Lee, D. H. Ko, and Y. S. Yoon, "Ionic conductivity properties of amorphous Li-La-Zr-O solid electrolyte for thin film batteries," Solid State Ionics, Article vol. 229, pp. 14-19, 2012, doi: 10.1016/j.ssi.2012.09.011.
    [184] H. Katsui and T. Goto, "Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition," Thin Solid Films, vol. 584, pp. 130-134, 2015/06/01/ 2015, doi: https://doi.org/10.1016/j.tsf.2014.11.094.
    [185] D. Hanft, J. Exner, and R. Moos, "Thick-films of garnet-type lithium ion conductor prepared by the Aerosol Deposition Method: The role of morphology and annealing treatment on the ionic conductivity," Journal of Power Sources, Article vol. 361, pp. 61-69, 2017, doi: 10.1016/j.jpowsour.2017.06.061.
    [186] M. Rawlence et al., "Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7–3xGaxLa3Zr2O12 Thin Films," ACS Applied Materials & Interfaces, vol. 10, no. 16, pp. 13720-13728, 2018/04/25 2018, doi: 10.1021/acsami.8b03163.
    [187] B. C. M. Tan et al., "Epigeneitc silencing of ribosomal RNA genes by Mybbp1a," Journal of Biomedical Science, Article vol. 19, no. 1, 2012, Art no. 57, doi: 10.1186/1423-0127-19-57.
    [188] Y. Zhu, S. Wu, Y. Pan, X. Zhang, Z. Yan, and Y. Xiang, "Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films," Nanoscale Research Letters, vol. 15, no. 1, p. 153, 2020/07/25 2020, doi: 10.1186/s11671-020-03378-x.
    [189] R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, and J. L. Rupp, "A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films," Nature Energy, vol. 4, no. 6, pp. 475-483, 2019, doi: https://doi.org/10.1038/s41560-019-0384-4.
    [190] J. Sastre, A. Priebe, M. Döbeli, J. Michler, A. N. Tiwari, and Y. E. Romanyuk, "Lithium Garnet Li7La3Zr2O12 Electrolyte for All-Solid-State Batteries: Closing the Gap between Bulk and Thin Film Li-Ion Conductivities," Advanced Materials Interfaces, Article vol. 7, no. 17, 2020, Art no. 2000425, doi: 10.1002/admi.202000425.
    [191] Y. Zhu et al., "Uncovering the Network Modifier for Highly Disordered Amorphous Li-Garnet Glass-Ceramics," Advanced Materials, vol. 36, no. 16, p. 2302438, 2024/04/01 2024, doi: https://doi.org/10.1002/adma.202302438.
    [192] D. J. Kalita, S. H. Lee, K. S. Lee, D. H. Ko, and Y. S. Yoon, "Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries," Solid State Ionics, vol. 229, pp. 14-19, 2012/12/14/ 2012, doi: https://doi.org/10.1016/j.ssi.2012.09.011.
    [193] Z. D. Hood, Y. Zhu, L. J. Miara, W. S. Chang, P. Simons, and J. L. M. Rupp, "A sinter-free future for solid-state battery designs," Energy & Environmental Science, 10.1039/D2EE00279E vol. 15, no. 7, pp. 2927-2936, 2022, doi: 10.1039/D2EE00279E.
    [194] X. Yi et al., "Duality of Li2CO3 in Solid-State Batteries," Transactions of Tianjin University, vol. 29, no. 1, pp. 73-87, 2023/02/01 2023, doi: 10.1007/s12209-022-00351-w.
    [195] S. Zhao et al., "Fundamental air stability in solid-state electrolytes: principles and solutions," Materials Chemistry Frontiers, 10.1039/D1QM00951F vol. 5, no. 20, pp. 7452-7466, 2021, doi: 10.1039/D1QM00951F.
    [196] S. Han, Z. Wang, Y. Ma, Y. Zhang, Y. Wang, and X. Wang, "Recent advances in solving Li2CO3 problems in garnet-based solid-state battery: A systematic review (2020–2023)," Journal of Energy Chemistry, vol. 90, pp. 58-76, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.jechem.2023.10.040.
    [197] W. Lu, T. Wang, M. Xue, and C. Zhang, "Improved Li6.5La3Zr1.5Nb0.5O12 electrolyte and effects of atmosphere exposure on conductivities," Journal of Power Sources, vol. 497, p. 229845, 2021/06/15/ 2021, doi: https://doi.org/10.1016/j.jpowsour.2021.229845.
    [198] S. Chen et al., "The Influence of Surface Chemistry on Critical Current Density for Garnet Electrolyte," Advanced Functional Materials, Article vol. 32, no. 23, 2022, Art no. 2113318, doi: 10.1002/adfm.202113318.
    [199] J. Biao et al., "Inhibiting Formation and Reduction of Li2CO3 to LiCx at Grain Boundaries in Garnet Electrolytes to Prevent Li Penetration," Advanced Materials, Article vol. 35, no. 12, 2023, Art no. 2208951, doi: 10.1002/adma.202208951.
    [200] W. He, H. Ding, C. Li, X. Chen, and W. Yang, "Salicylic acid treated Li7La3Zr2O12 achieves dual functions for a PEO-based solid polymer electrolyte in lithium metal batteries," Sustainable Energy & Fuels, 10.1039/D2SE01782B vol. 7, no. 7, pp. 1645-1655, 2023, doi: 10.1039/D2SE01782B.
    [201] H. Zhang et al., "On High-Temperature Thermal Cleaning of Li7La3Zr2O12 Solid-State Electrolytes," ACS Applied Energy Materials, vol. 6, no. 13, pp. 6972-6980, 2023/07/10 2023, doi: 10.1021/acsaem.3c00459.
    [202] M. Jia, Z. Bi, C. Shi, N. Zhao, and X. Guo, "Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes," Journal of Power Sources, vol. 486, p. 229363, 2021/02/28/ 2021, doi: https://doi.org/10.1016/j.jpowsour.2020.229363.
    [203] J. Liu et al., "A Simple and Efficient Strategy for Ameliorating Li/LLZO Interfacial Contact," Energy & Fuels, vol. 36, no. 15, pp. 8500-8505, 2022/08/04 2022, doi: 10.1021/acs.energyfuels.2c01770.
    [204] W. Feng et al., "Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer," Angewandte Chemie International Edition, vol. 59, no. 13, pp. 5346-5349, 2020/03/23 2020, doi: https://doi.org/10.1002/anie.201915900.
    [205] E. Kazyak et al., "Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12," Chemistry of Materials, vol. 29, no. 8, pp. 3785-3792, 2017/04/25 2017, doi: 10.1021/acs.chemmater.7b00944.
    [206] Z. Bi, Q. Sun, M. Jia, M. Zuo, N. Zhao, and X. Guo, "Molten Salt Driven Conversion Reaction Enabling Lithiophilic and Air-Stable Garnet Surface for Solid-State Lithium Batteries," Advanced Functional Materials, Article vol. 32, no. 52, 2022, Art no. 2208751, doi: 10.1002/adfm.202208751.
    [207] M. Donzelli et al., "On the Surface Modification of LLZTO with LiF via a Gas-Phase Approach and the Characterization of the Interfaces of LiF with LLZTO as Well as PEO+LiTFSI," Materials, vol. 15, no. 19, doi: 10.3390/ma15196900.
    [208] J. Gao et al., "Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries," Materials Letters, vol. 280, p. 128543, 2020/12/01/ 2020, doi: https://doi.org/10.1016/j.matlet.2020.128543.
    [209] A. Sharafi et al., "Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance," Journal of Materials Chemistry A, 10.1039/C7TA03162A vol. 5, no. 26, pp. 13475-13487, 2017, doi: 10.1039/C7TA03162A.
    [210] L. Cheng et al., "Garnet Electrolyte Surface Degradation and Recovery," ACS Applied Energy Materials, vol. 1, no. 12, pp. 7244-7252, 2018/12/24 2018, doi: 10.1021/acsaem.8b01723.
    [211] "Raman Scattering." https://en.wikipedia.org/wiki/Raman_scattering (accessed April 6, 2024).
    [212] "Cl Technology Co." http://www.cl-technology.com.tw/ (accessed April 6, 2024).
    [213] A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, and H. A. Gasteiger, "Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities," Electrochimica Acta, vol. 346, p. 136271, 2020/06/20/ 2020, doi: https://doi.org/10.1016/j.electacta.2020.136271.
    [214] F. Tietz, T. Wegener, M. T. Gerhards, M. Giarola, and G. Mariotto, "Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12," Solid State Ionics, vol. 230, pp. 77-82, 2013/01/10/ 2013, doi: https://doi.org/10.1016/j.ssi.2012.10.021.
    [215] "The International XPS Database." https://xpsdatabase.net/ (accessed 03 June, 2024).
    [216] W. Xia et al., "Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles," ACS Applied Materials & Interfaces, vol. 8, no. 8, pp. 5335-5342, 2016/03/02 2016, doi: 10.1021/acsami.5b12186.
    [217] K. N. Wood and G. Teeter, "XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction," ACS Applied Energy Materials, vol. 1, no. 9, pp. 4493-4504, 2018/09/24 2018, doi: 10.1021/acsaem.8b00406.
    [218] A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell. "NIST X-ray Photoelectron Spectroscopy Database." https://srdata.nist.gov/XPS/ (accessed June 3, 2024).
    [219] Z. Warecki et al., "Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices," ACS Energy Letters, vol. 9, no. 5, pp. 2065-2074, 2024/05/10 2024, doi: 10.1021/acsenergylett.4c00674.
    [220] J. Ju, G. Ji, C. Tang, K. Yang, and Z. Zhu, "The effect of Li2O on the evaporation and structure of low-fluoride slag for vacuum electroslag remelting," Vacuum, vol. 183, p. 109920, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.vacuum.2020.109920.

    無法下載圖示 校內:2027-08-20公開
    校外:2027-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE