| 研究生: |
莊唯甄 Chuang, Wei-Chen |
|---|---|
| 論文名稱: |
半碳化銅/酚醛樹脂基摩擦材料微結構及磨潤行為探討 Structure and Tribological Behavior of Semi-Carbonized Copper/Phenolic Resin-Based Friction Material |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey |
| 共同指導教授: |
朱建平
Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 半金屬摩擦材料 、半碳化 、等速磨耗 |
| 外文關鍵詞: | semi-metallic friction material, semi-carbonizing, constant-speed tast |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗室過去在半金屬摩擦材料領域的研究中,得知紅銅纖維/紅銅粉末的相對含量、熱壓溫度及壓力、半碳化溫度、材料A與材料B添加之最佳製程參數—TGA與TGB試片,在磨耗測試中,具有良好的磨耗性能表現,有適當的摩擦係數與低磨耗量,並且在測試過程中沒有任何噪音的出現。
本研究以TGA、TGB試片為測試對象,探討兩試片在改變轉速、荷重,以等速磨耗試驗的方式去測試在不同條件下,其磨潤行為的表現,並與商業試片做比較,評估方式包含磨耗初期、中期、後期摩擦係數、磨耗量。
實驗結果顯示TGA在等速磨耗試驗中,改變轉速及荷重下,是三種試片中有最穩定且最可靠的磨耗表現,無論在不同轉速或荷重下,對試片的影響不大,也就是具有足夠的摩擦係數、低磨耗量、高穩定性。
This research is based on the past research of semi-metallic friction material. From the past research, we know the best composition of the friction materials, including phenolic resin, copper fiber, copper powder, graphite powder, and vermiculite, and we also found the best process parameters, including temperature and pressure of hot press, time and temperature of semi-carbonizing. In this study, we use the best performance specimen (TGA and TGB) as our research subjects, the constant-speed tribological tests, the effects of load and speed on the friction material sliding against 410 stainless steel.
The result shows that, no matter under the same load with different speeds or under the same speed with different loads, the specimen TGA has a higher friction coefficient, lower disc wear and comparable pad wear than its commercial high temperature-sintered metallic.
A. Saffar, A. Shojaei. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials, Wear 269: 145-151, 2010.
Abebe M, Appl FC. Theoretical analysis of the basic mechanics of the abrasive processes. Part 1: General model. Wear 126: 251-266, 1988.
Amira Sellami, Mohamed Kchaou, Riadh Elleuch, Anne-Lise Cristol, Yannick Desplanques. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material. Materials and Design 59: 84-93, 2014.
Anderson AE. Friction and wear of Automotive Brakes. In Henry SD, editor. ASM Handbook, Vol. 18, Metals Park, OH 44073: ASM International: 569-577, 1992.
Awasthi S, Wood JL. C-C composite materials for aircraft brakes. Advanced Ceramic Materials 3: 449-451, 1988.
Bao JS, Zhu ZC, Tong MM, et al. Wear modalities and mechanisms of the mining non-asbestos composite brake material. Appl Cpmpos Mater:331-339, 2013.
Bay N and Wanheim T. Real area of contact and friction stress at high pressure sliding contact. Wear 38:201-209, 1976.
Bergman F, Eriksson M, Jacobson S. Influence of disc topography on generation of brake squeal. Wear 225-229: 621-628, 1999.
Bhabani K. Satapathy, Amar Patnaik, Nandan Dadkar, Dilip K. Kolluri, Bharat S. Tomar. Influence of vermiculite on performance of flyash-based fibre-reinforced hybrid composites as friction materials. Materials and Design 32: 4354-4361, 2011
Bowden FP, Tabor D. The friction and lubrication of solid. Oxford: Clarendon Press: 87, 1950.
Chester J. Friction materials. US Pat 4273699, 1980.
Deng H, Li K, Li, H, et al. Effect of brake pressure and brake speed on the tribological properties of carbon/carbon composites with different pyrocarbon textures. Wear 270:95-103, 2010.
Filip Bergman, Mikael Eriksson, Staffan Jacobson. Influence of disc topography on generation of brake squeal Wear 225-229, 1999.
H. Jang, J.S. Lee, J.W. Fash. Compositional effects of the brake friction material on creep groan phenomena. Wear 251: 1477-1483, 2001.
Horiguchi K. Non-asbestos friction material. US Pat 5106887, 1992.
Hutchings IM. Mechanisms of wear in powder technology: a review. Powder Technol 76:3-13, 1993.
Jacko MG, Ducharme RT, Somers JH. Brake and clutch emissions generated during vehicle operation. SAE Trans 35: 1813-1831, 1973.
Jacko MG, Rhee SK. Brake linings and clutch facings. In Grayson M, editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983.
Jia X, Zhou B, Chen Y, Jiang M, ling X. Study on worn surface layers of the friction materials and grey cast iron. Tribol 15(2): 171-176, 1995.
Kim SJ, Cho MH, Lim D-S, Jang H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 251: 1484–1491, 2001.
K.-H. Zum Gahr. Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact. Wear 133, Issue 1, 1989.
Kamioka N. Production of friction material. Japanese Laid-Open Patent Publication 63-310770, 1988.
Kamioka N. Production of friction material. Japanese Laid-Open Pat Pub 63-310770, 1988.
Lam R, Chen YF. Friction lining materials. US Pat 5676577, 1997.
LAUSEVIC and MARINKOVIC, Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24 5 575-580, 1986.
Nan Hoang Traffic Instrument Co., Ltd.
Newman LB. Friction materials. New Jersey. USA: Noyes data corporation: 1, 1978.
Ohya K, Sayama N. Frictional material for brake. Japanese Laid-Open Pat Pub 04-022827, 1992.
Ohya K, Sayama N. Friction material for brake. US Pat 5344854, 1994.
P. M. Huang, M.K. Wang. MINERALS, PRIMARY. Encyclopedia of Soils in the Environment 500-510, 2005.
Rhee SK. Wear mechanisms at low-temperatures for metal-reinforced phenolic resins. Wear 23: 261-263, 1973.
Rhee SK, Kwolek JP. Sponge iron friction material. US Patent 3835118, 1974.
Richardson RCD. The abrasive wear of metals and alloys. Proc Instn Mech Engrs 182(3A): 410-414, 1967.
Takashi K, Osamu N. Friction material. US Patent 5576369, 1996.
Vishwanath B, Verma AP, Kameswara Rao CVS. Effect of reinforcement on friction and wear of fabric reinforced polymeric composites. Wear 167: 93-99, 1993.
Wright MA, Butson G. On-highway brake characterization and performance evaluation. Materially Speaking 11(1): 1-7, 1997.
Yuji H, Takahisa K. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol Transactions 39(2): 346-353, 1996.
行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,中華民國85年
何淑靜,銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,中華民國93年
高維山譯,煞車系統設計及安全性,科技圖書,台北市,中華民國93年
鄭勝仁,碳化溫度及銅纖維含量對銅/酚醛樹脂半金屬基摩擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,中華民國96年
蘇家萱,纖維與石墨的添加對半碳化銅/酚醛樹脂摩擦材料機械及磨潤性質之影響,國立成功大學材料科學及工程學系,台南市,中華民國103年