簡易檢索 / 詳目顯示

研究生: 蔡定洲
Tsai, Ting-Chou
論文名稱: 基於權重並結合分群之直方圖等化的對比強化演算法
A Weight-Based Contrast Enhancement Algorithm by Clustered Histogram Equalization
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 44
中文關鍵詞: 對比強化直方圖等化fuzzy c-means分群演算法
外文關鍵詞: contrast enhancement, histogram equalization, fuzzy c-means clustering algorithm
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文提出了一個對比強化演算法。有些演算法只有全域性或區域性的資訊來強化,但是這樣常常會造成過度強化而使影像看起來不自然,而提出的演算法則結合這兩種資訊。在全域性的部分,經由對應曲線來找出新的平均亮度、最大及最小亮度,以求符合人眼視覺系統(Human Visual System, HVS)概念。而在區域性的部分,則利用fuzzy c-means分群演算法對影像分群,而每一群都可以得到亮度分布及像素數目這兩種資訊,再藉由這兩種資訊計算出權重,並基於這些權重以直方圖等化的方式來強化影像。
    實驗結果顯示,我們的演算法可以穩定地強化影像的對比,而且會有較小的機率產生過度強化的情況,讓整體影像看起來自然且可以清楚地呈現出更多細節。

    This thesis proposed a contrast enhancement algorithm. Some methods enhance images depending on only the global or the local information, therefore it would cause over-enhancement usually and make the image look unnatural. The proposed method enhances image based on the global and local information. For the global part, we proposed mapping curves to find the new average, maximum, and minimum intensity to try to suit the concept of Human Visual System (HVS) for obtaining the better perceptual results. For the local part, we utilized fuzzy c-means clustering algorithm to group image, and we can obtain the information of intensity distribution and pixel number from each group. Then we calculate weights according to the information, and enhance images by histogram equalization (HE) depending on the weights.
    The experiment results show that our method can enhance the contrast of image steadily, and it causes over-enhancement with lower probability than other methods. The whole image not only looks natural but also shows detail texture more clearly after applying our method.

    Contents i List of Figures iii Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Contrast Enhancement 3 2.1.1 Histogram 3 2.1.2 Histogram Equalization 4 2.1.3 Weighted Thresholded Histogram Equalization 5 2.2 Clustering Algorithm 7 2.2.1 Hard K-means Clustering 7 2.2.2 Fuzzy C-means Clustering 9 2.3 Human Visual System 11 2.3.1 Light Receptors 11 2.3.2 Brightness Adaptation 12 2.3.3 Weber-Fechner Law 14 2.4 The Analysis of Previous Works on Contrast Enhancement 16 2.4.1 Weighted Thresholded Histogram Equalization (WTHE) 16 2.4.2 Average Luminance Based Weighted Thresholded Histogram Equalization (ALWTHE) 18 Chapter 3 The Proposed Algorithm 20 3.1 Fuzzy C-means Clustering 22 3.2 Determination of I_A^' , I_max^' and I_min^' 25 3.3 Intensity Allocation 27 Chapter 4 Simulation Results 30 4.1 Comparisons with Other Approach 30 4.2 More Results 36 Chapter 5 Conclusion and Future Work 40 5.1 Conclusion 40 5.2 Future Work 41 Bibliography 42

    [1] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, and O. Chae, "A Dynamic Histogram Equalization for Image Contrast Enhancement," IEEE Trans. Consumer Electronics, vol. 53, no. 2, May 2007.
    [2] J. C. Bezdek, R. Ehrlich, and W. Full, "FCM: the fuzzy c-means clustering algorithm," Computers & Geosciences, v. 10, no. 2–3, p. 191–203, 1984.
    [3] R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 2nd ed. Reading, MA: Addison-Wesley, 1992.
    [4] A. K. Jain, "Fundamentals of Digital Image Processing," Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [5] Y. T. Kim, "Contrast enhancement using brightness preserving bihistogram equalization," IEEE Trans. Consumer Electronics, vol. 43, no. 1, pp. 1–8, Feb 1997.
    [6] Y. K. Kim, J.K. Paik, and B.S. Kang, "Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering," IEEE Trans. Consumer Electronics, vol. 44, no. 1, pp. 82–86, Feb 1998.
    [7] S. M. Pizer, "The medical image display and analysis group at the university of North Carolina: reminiscences and philosophy," IEEE Trans. Medical Imaging, vol. 22, no. 1, pp. 2–10, Jan 2003.
    [8] S. C. Pei, Y. C. Zeng, and C. H. Chang, "Virtual restoration of ancient Chinese paintings using color contrast enhancement and lacuna texture synthesis," IEEE Trans. Image Processing, vol. 13, pp. 416–429, 2004.
    [9] J. H. Shen, "On the foundations of vision modeling: I.Weber's law and Weberized TV restoration," Physica D, vol. 175, no. 3-4, pp. 241-251, 2003.
    [10] J. H. Shen and Y. M. Jung, "Weberized Mumford-Shah model with Bose-Einstein photon noise," Applied Mathematics and Optimization, vol. 53, no. 3, pp. 331-358, 2006.
    [11] S. C. Tai, Jen-Hao Cheng, "A novel high dynamic range compression algorithm with detail refinement," Master’s thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2005.
    [12] S. C. Tai, Kang-Ming Li, "A sharpness enhancement algorithm with adaptive acutance compensation," Master's thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2009.
    [13] A. Torre, A. M. Peinado, J. C. Segura, J. L. Perez- Cordoba, M. C. Benitez, and A. J. Rubio, "Histogram equalization of speech representation for robust speech recognition," IEEE Trans. Speech Audio Processing, vol. 13, no. 3, pp. 355–366, May 2005.
    [14] P. Whittle, "Increments and decrements: Luminance discrimination," VisionResearch, 26(10):1677 – 1691, 1986.
    [15] K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Dejhan, and A. Somboonkaev, "Contrast Enhancement Using Multi-Peak Histogram Equalization With Brightness Preserving," in Proceedings of IEEE Asia-Pacific Conference on Circuits and Systems, Chiangmai, Taiwan, pp. 455-458, Nov 1998.
    [16] W A. Wahab, S. H. Chin, and E.C. Tan, "Novel approach to automated fingerprint recognition," in Proc. IEE Vision, Image and Signal Processing, vol. 145, pp. 160–166, 1998.
    [17] Q. Wang and R. Ward, "Fast image/video contrast enhancement based on weighted thresholded histogram equalization," Consumer Electronics, IEEE Transactions on, 53(2):757–764, May 2007.
    [18] J. Zimmerman, S. Pizer, E. Staab, E. Perry, W. McCartney, and B. Brenton, "Evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement," IEEE Trans. Medical Imaging, vol. 7, no. 4, pp. 304–312, Dec 1988.

    下載圖示 校內:2016-08-08公開
    校外:2016-08-08公開
    QR CODE