簡易檢索 / 詳目顯示

研究生: 洪三淇
Hung, San-chi
論文名稱: 多標準應用CMOS混頻器之研製
Design of CMOS Mixer for Multi-Standard Application
指導教授: 蘇炎坤
Su, Yan-kuin
曾永華
Tzeng, Yon-hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 105
中文關鍵詞: 混頻器
外文關鍵詞: mixer
相關次數: 點閱:42下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在射頻接收器前端電路中,混頻器是一重要元件,其將來自低雜訊放大器的高頻訊號轉換成低頻訊號,提供給後級的數位電路所使用。在RFIC電路的設計課題中,可以發現混頻器的雜訊和線性度對於整個射頻接收器前端電路是相當重要的。

    在2~11GHz的應用頻帶中,有多個不同標準的無線通訊系統,包含了WLAN、UWB和WiMAX。在本篇論文中,將提出數個射頻混頻器之設計,包含以下三個電路:應用於3.1~10.6GHz低功率高增益平坦度超寬頻混頻器、應用於3.1~10.6GHz高線性超寬頻混頻器、以及2.4/5.2GHz 共電流雙頻混頻器。

    在3.1~10.6GHz低功率高增益平坦度超寬頻混頻器設計中,提供多個單頻的外接式巴倫,達到全頻帶的差動輸入訊號。並採用反向器當作LO埠的開關,使其達到低電流損耗。

    在3.1~10.6GHz高線性超寬頻混頻器中,延續前者的核心架構,提供寬頻晶片型的巴倫取代多個單頻的外接式巴倫,可以減少晶片外的不確定寄生效應,例如:鎊線、SMA接頭、PCB板連接…等因素。並且使量測環境簡易化,進一步達到晶片單一化。

    在2.4/5.2GHz 共電流雙頻混頻器中,雜訊來自頻帶中和頻帶外的干擾透過元件的非線性機制會污染所需頻帶的訊號,並且會退化電路的雜訊指數和線性度,為了減輕其退化,兩個抑制干擾的雙頻機制運用在此電路中。

    本篇論文之電路設計是以TSMC 0.18um CMOS製程之model進行模擬,並透過CIC申請下線,完成晶片之製作

    In radio frequency receiver front-end, mixer is an important component. Mixer can translate high frequency signal from low noise amplifier into low frequency signal for base-band system. In the course of design of the RFICs, it was found that its noise and linearity performances are important for the performance of the receiver.

    There are a lot of different standards of wireless communication systems operating in 2~11GHz, including WLAN, UWB and WiMAX. In this thesis, we designed three radio frequency mixers which contain a low-power high gain-flatness CMOS switched transconductor UWB mixer, a high linearity of CMOS switch transconductor UWB mixer with on-chip baluns and a dual-band concurrent mixer with on-chip baluns for multi-standard applications.

    In the first design, in order to provide input differential signal of overall band in UWB system, several single-frequency outer baluns are used. For LO port, inverters are taken as switch to achieve low power consumption.

    In the second design, heritage core circuit of the former design, several single-frequency baluns are replaced by wideband on-chip balun which can reduce uncertain parasitic effect of off-chip, such as bonding wire, SMA connection and the connection of PCB boards. With on-chip balun can make the measurement more convenient and reach our chip simplification.

    In the third design, the noises from in-band or out-of-band interferences will contaminate signals of desired bands through nonlinearity mechanism of devices and degrade the circuit performances of noise figure and linearity. In order to alleviate the degradation, two dual-band circuit topologies are used to suppress the interferences in this design.

    With EM simulation, the influence of lines in the layout can be considered. The circuits are implemented by TSMC 0.18um CMOS process. These chips have also been fabricated by the support of CIC in Taiwan.

    Table of Contents Abstract Ⅰ Contents Ⅵ List of Tables Ⅹ List of Figures ⅩⅠ Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis organization 2 Chapter 2 Wireless Communication Systems 3 2.1 WLAN (Wireless Local Area Network) 3 2.1.1 802.11a -- OFDM in the 5GHz Band 4 2.1.2 802.11b -- High Rate DSSS in the 2.4GHz band 5 2.1.3 802.11g - Higher Rate Extensions in the 2.4GHz Band 6 2.1.4 The Specification of WLAN 7 2.2 UWB (Ultra Wide Band) 8 2.2.1 UWB and Shannon’s Theory 10 2.2.2 The Specification of Ultra Wide Band for Receiver 11 2.3WiMAX (Worldwide Interoperability for Microwave Access) 13 2.3.1 The Specification of WiMAX for Receiver 13 Chapter 3 The Architecture of Radio Frequency 15 Front-end Receiver 3.1 Mixer 15 3.1.1 The Operation Principle of Mixer 16 3.2 Channel Select Filter 17 3.3 Image Reject Filter 17 3.4 Selection of intermediate frequency 18 Chapter 4 The Characteristics of Mixer 19 4.1 Conversion Gain 19 4.2 Scattering Parameter (S-Parameter) 19 4.3 Nonlinear effect 22 4.3.1 DC offset 23 4.3.2 Gain Compression (1-dB Compression Point) 25 4.3.3 Third Intercept Point (IP3) 26 4.3.4 Relationship between P1dB and IIP3 29 4.4 Isolation 29 4.5 Type of Noise 30 4.5.1 Thermal Noise of Resistor 31 4.5.2 Channel Noise of MOSFET 31 4.5.3 Flicker Noise 32 4.5.4 Single Sideband Noise (SSB) and 33 Double Sideband Noise (DSB) 4.5.5 Noise Figure (NF) 34 Chapter 5 Theory of Transmission Line 37 5.1 Wave Characteristic on Finite Transmission Lines 37 5.1.1 The ABCD Matrix of Transmission Line 40 5.1.2 The ABCD Matrix of Transmission Line with Shunting 41 Open Stub 5.1.3 The ABCD Matrix of Transmission Line with Shunting 42 Short Stub 5.2 ABCD Matrix Converts into Z Matrix 43 5.3 S-Parameter Converts into ABCD Matrix 45 5.4 Balun 47 5.4.1 Rat-Race Ring 48 5.4.1.1 Even-Odd Analyze 49 5.4.2 On-Chip Balun 53 Chapter 6 Design of Radio Frequency Mixer 55 6.1 The Low-power High Gain-Flatness CMOS Switched 55 Transconductor UWB Mixer 6.1.1 Outer Balun 56 6.1.2 RF Matching Network 60 6.1.3 LO Feeding Network 60 6.1.4 Mixer Core and Output Buffer 61 6.1.5 The Results of Simulation and Measurement 62 6.1.6 Summary 71 6.2 The High Linearity of CMOS Switched Transconductor UWB 72 Mixer with On-Chip Baluns 6.2.1 On-Chip Balun 72 6.2.2 RF Matching Network 76 6.2.3 LO Feeding Network 77 6.2.4 Mixer Core and Output Buffer 77 6.2.5 The Results of Simulation and Measurement 78 6.2.6 Summary 88 6.3 The Dual-Band Concurrent Mixer with On-Chip Baluns 89 For Multi-Standard Applications 6.3.1 On-Chip Balun 89 6.3.2 RF Matching Network 93 6.3.3 LO Feeding Network 93 6.3.4 Mixer Core and Output Buffer 94 6.3.5 The Results of Simulation 96 6.3.6 Summary 100 Chapter 7 Conclusions 102 References 103

    [1] Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4GHzBand, IEEE Std. 802.11b-1999.
    [2] Wireless LAN medium access control (MAC) and physical layer(PHY) specifications, IEEE Std 802.11g-2003 (Amendment to IEEE Std 802.11, 1999 Edn.
    [3] Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 1: high-speed physical layer in the lGHz band, IEEE Std. 802.11a-1999.
    [4] Wikipedia, the free encyclopedia, IEEE 802.11
    http://en.wikipedia.org/wiki/IEEE_802.11
    [5] Chang, F.-C.; Huang, P.-C.; Chao, S.-F.; Wang, H.; ”A Low Power Folded Mixer for UWB System Applications in 0.18-μm CMOS Technology” Microwave and Wireless Components Letters, IEEE Volume 17, Issue 5, Page(s):367- 369, May 2007
    [6] Razavi, B.; Aytur, T.; Lam, C.; Fei-Ran Yang; Kuang-Yu Li; Ran-Hong Yan; Han-Chang Kang; Cheng-Chung Hsu; Chao-Cheng Lee; “A UWB CMOS transceiver” Solid-State Circuits, IEEE Journal of Volume 40, Issue 12, Page(s):2555 – 2562, Dec. 2005
    [7] Batra, A.; Balakrishnan, J.; Aiello, G.R.; Foerster, J.R.; Dabak, A.;”Design of a multiband OFDM system for realistic UWB channel environments” Microwave Theroy and Techniques, IEEE Tractions on Volume 52, Issue9, Part 1, Page(s):2123-2138, Sept. 2004
    [8] Motieifar, A.; Pour, Z.A.; Bridges, G.; Shafai, C.; Shafai, L.; ”An Ultra Wideband (UWB) Mixer with 0.18UM RF CMOS Technology” Electrical and Computer Engineering, 2006. CCECE’06. Page(s):697-700, Canadian Conference onMay 2006
    [9] WiMAX Forum™ Mobile System Profile, Release 1.0 Approved Specification(Revision 1.4.0: 2007-05-02)
    [10] Farahani, B.J.; Ismail, M.; “WiMAX/WLAN radio receiver architecture for convergence in WMANS” Circuits and Systems, 2005. Vol. 2, Page(s):1621 - 1624, 48th Midwest Symposium on 7-10 Aug. 2005
    [11] Klumperink, E.A.M.; Louwsma, S.M.; Wienk, G.J.M.; Nauta, B.; “A CMOS switched transconductor mixer”Solid-State Circuits, IEEE Joutnal of Volume 39, Issue 8, Page(s):1231 - 1240 Aug. 2004
    [12] Garuda, C.; Ismail, M.; “A multiband CMOS RF front-end for 4G WiMAX and WLAN applications,” Proceeding of IEEE International Symposium on Circuits and Systems, ISCAS, pp. 3049-3052, 21-24 May, 2006
    [13] Yijun Zhou; Chee Piew Yoong; Leong Siew Weng; Yin Jee Khoi; Chia Yan Wah, M.; Ang Chai Moy, K.; Wee Tue Fatt, D.; “A 5 GHz dual-mode WiMAX/WLAN direct-conversion receiver,” Proceeding of IEEE International Symposium on Circuits and Systems, ISCAS, pp. 3053-3056, 21-24 May, 2006
    [14] Choi, K.; Dong Hun Shin; Yue, C.P.”A 1.2-V, 5.8-mW, Ultra-Wideband Folded Mixer in 0.13 μm CMOS” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 489-492, 3-5 June, 2007
    [15] Behzad Razavi, “RF Microelectronics”, Prentice Hall Communication Engineering and Emerging technologies Series Theodore S. Rappaport, Series Editor.
    [16] Eric Chihming Tsai,”Microwave Engineering” , NCKU, Fall 2006
    [17] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, the McGraw-Hill Companies, Boston, 2001
    [18] Lim, C.C.; Yeo, K.S.; Chew, K.W.; Tan, C.Y.; Do, M.A.; Ma, J.G.; Chan, L.; “Equivalent circuit model of a stacked inductor for high-Q on-chip RF applications”Circuits, Devices and Systems, IEE Proceedings Volume 153, Issue 6, Page(s):525 – 532, Dec. 2006

    下載圖示 校內:立即公開
    校外:2008-07-02公開
    QR CODE