| 研究生: |
林淯星 Lin, Yu-Hsing |
|---|---|
| 論文名稱: |
利用有限差分時域法比較微帶線和拓樸波導饋送的相位陣列縫隙天線輻射 Comparison of Phase Arrays Slot Antenna Radiation fed by Microstrip-lines and Topological Waveguides by FDTD Method |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 微帶線 、拓樸波導 、陣列縫隙天線 、有限時域差分法 |
| 外文關鍵詞: | microstrip-line, topological waveguides, phase arrays slot antenna arrays, FDTD |
| 相關次數: | 點閱:159 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天線是通訊系統中重要的組成部分,不同應用場景的天線設計在增益、頻寬、極化和尺寸等方面存在很大差異,但所有天線設計都追求低損耗的理想情況,阻抗不匹配是導致損耗的主要原因,其可能發生在天線與饋電之間的界面處,阻抗不匹配會導致理想情況下饋送進天線的能量被反射回饋電處,從而降低輻射效率,引起反射波和入射波之間的干擾,甚至可能損壞元件,為了解決這個問題,光子拓撲絕緣體被提出作為一種新興的解決方案,其是在光子晶體的基礎上結合拓樸性質的材料,使能量侷限在材料的結構界面裡,並沿單一方向傳播,這種傳播現象對於反射和散射具有堅固性,其稱為拓樸邊緣態,拓樸邊緣態的特性使天線與饋送之間的邊界處,即使遇到阻抗不匹配也不會導致波被反射回拓撲波導。
本篇論文為在60GHz下使用微帶線和光子拓樸絕緣體當作天線的饋送波導,首先,我們使用FDTD方法對微帶線饋送的縫隙天線進行模擬後,將基板換成液晶後,透過液晶調控天線之間的相位差,並利用微帶線將訊號饋送給陣列縫隙天線,分析其激發效率、相位和輻射特性。接下來為了增加天線之間的激發相位差,加入將微帶線加入蜿蜒線結構,分析其激發效率、相位和輻射特性。最後對拓撲波導模式進行了模擬,透過基於量子自旋霍爾效應和量子谷霍爾效應的拓樸波導,以拓樸邊緣態將訊號饋送給縫隙天線,分析其激發效率、相位和輻射特性,最後比較與微帶線的差異。
Antennas are crucial for communication systems, and different antenna applications require specific parameters such as gain, bandwidth, polarization, and size. However, the goal of all antenna designs is low loss. Impedance mismatch at the antenna-feed interface is a major contribution to losses, leading to reduced radiation efficiency, interference, and device damage. To solve the above problems, photonic topological insulators have been proposed as an emerging solution. Photonic topological insulators provide a promising solution by utilizing the topological properties of photonic crystals. They confine energy within the interface of the material, propagating in one direction, known as topological edge states. This phenomenon resists reflections and scattering, ensuring that the waves are not reflected back even if the impedances are not matched.
This investigation was conducted to simulate microstrip-lines and photonic topological insulators as feeding waveguides for a 60 GHz slot antenna. A slot antenna fed by a microstrip-line was first simulated using the FDTD method. To dynamically change the excitation efficiency, phase, and radiation characteristics the substrate is replaced with liquid crystal to control the phase between each slot antenna. In order to further enhance the phase difference, meander-lines were introduced in adjacent antennas. Finally, topological waveguides were introduced to feed signals to slot antennas using topological edge states based on the quantum spin Hall effect and the quantum valley Hall effect. The excitation efficiency, phase, and radiation characteristics with the microstrip-line and topological waveguide were compared.
[1] R. Hoque, M. Asaduzzaman, I. Hossain, F. Imteaz, and U. Saha, “Distinguishing performance of 60-GHz microstrip patch antenna for different dielectric materials,” in 2014 International Conference on Electrical Engineering and Information & Communication Technology, Apr. 2014, pp. 1–4. doi: 10.1109/ICEEICT.2014.6919077.
[2] C. A. Balanis, Antenna theory: analysis and design, 3rd ed. Hoboken, NJ: John Wiley, 2005.
[3] B. Bosco, R. Emrick, S. Franson, J. Holmes, and S. Rockwell, “Emerging Commercial Applications Using the 60 GHz Unlicensed Band: Opportunities and Challenges,” in 2006 IEEE Annual Wireless and Microwave Technology Conference, Feb. 2006, pp. 1–4. doi: 10.1109/WAMICON.2006.351908.
[4] Y. Yoshimura, “A Microstripline Slot Antenna (Short Papers),” IEEE Trans. Microwave Theory Techn., vol. 20, no. 11, pp. 760–762, Nov. 1972, doi: 10.1109/TMTT.1972.1127868.
[5] S. Singh, D. Bisharat, and D. Sievenpiper, “Topological antennas: Aperture radiators, leaky-wave surfaces, and orbital angular momentum beam generation,” Journal of Applied Physics, vol. 130, no. 2, p. 023101, Jul. 2021, doi: 10.1063/5.0051239.
[6] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature, vol. 461, no. 7265, Art. no. 7265, Oct. 2009, doi: 10.1038/nature08293.
[7] Y. Lumer and N. Engheta, “Topological Insulator Antenna Arrays,” ACS Photonics, vol. 7, no. 8, pp. 2244–2251, Aug. 2020, doi: 10.1021/acsphotonics.0c00797.
[8] H. G. Booker, “Slot aerials and their relation to complementary wire aerials,” Journal of the Institution of Electrical Engineers - Part IIIA: Radiolocation, vol. 93, no. 4, pp. 620–626, 1946, doi: 10.1049/ji-3a-1.1946.0150.
[9] S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” The Bell System Technical Journal, vol. 15, no. 1, pp. 92–112, Jan. 1936, doi: 10.1002/j.1538-7305.1936.tb00720.x.
[10] K. von Klitzing, “The quantized Hall effect,” Rev. Mod. Phys., vol. 58, no. 3, pp. 519–531, Jul. 1986, doi: 10.1103/RevModPhys.58.519.
[11] F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly,’” Phys. Rev. Lett., vol. 61, no. 18, pp. 2015–2018, Oct. 1988, doi: 10.1103/PhysRevLett.61.2015.
[12] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett., vol. 95, no. 22, p. 226801, Nov. 2005, doi: 10.1103/PhysRevLett.95.226801.
[13] D. Xiao, W. Yao, and Q. Niu, “Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport,” Phys. Rev. Lett., vol. 99, no. 23, p. 236809, Dec. 2007, doi: 10.1103/PhysRevLett.99.236809.
[14] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “The valley Hall effect in MoS2 transistors,” Science, vol. 344, no. 6191, pp. 1489–1492, Jun. 2014, doi: 10.1126/science.1250140.
[15] F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett., vol. 100, no. 1, p. 013904, Jan. 2008, doi: 10.1103/PhysRevLett.100.013904.
[16] L.-H. Wu and X. Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material,” Phys. Rev. Lett., vol. 114, no. 22, p. 223901, Jun. 2015, doi: 10.1103/PhysRevLett.114.223901.
[17] M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, “Robust topologically protected transport in photonic crystals at telecommunication wavelengths,” Nature Nanotech, vol. 14, no. 1, pp. 31–34, Jan. 2019, doi: 10.1038/s41565-018-0297-6.
[18] Kane Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, no. 3, pp. 302–307, May 1966, doi: 10.1109/TAP.1966.1138693.
[19] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, Oct. 1994, doi: 10.1006/jcph.1994.1159.
[20] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett., vol. 27, no. 5, pp. 334–339, Dec. 2000, doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A.
[21] D. E. Merewether, R. Fisher, and F. W. Smith, “On Implementing a Numeric Huygen’s Source Scheme in a Finite Difference Program to Illuminate Scattering Bodies,” IEEE Transactions on Nuclear Science, vol. 27, no. 6, pp. 1829–1833, Feb. 1980, doi: 10.1109/TNS.1980.4331114.
[22] K. Umashankar and A. Taflove, “A Novel Method to Analyze Electromagnetic Scattering of Complex Objects,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-24, no. 4, pp. 397–405, Jan. 1982, doi: 10.1109/TEMC.1982.304054.
[23] Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, “Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice,” Phys. Rev. Lett., vol. 118, no. 8, p. 084303, Feb. 2017, doi: 10.1103/PhysRevLett.118.084303.
校內:2028-07-31公開