| 研究生: |
姜政熙 Jiang, Zhen-Xi |
|---|---|
| 論文名稱: |
鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電耦合特性 Magnetoelectric coupling properties of NiFe2O4/BST/STO epitaxial films |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 磁電耦合 、多鐵性 |
| 外文關鍵詞: | magnetoelectric, multiferroic |
| 相關次數: | 點閱:102 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,主要探討奈米複合雙層膜的多鐵性效應。利用調整製程參數形成不同成分與介電特性的鐵電薄膜,並研究不同鍶濃度參雜之鈦酸鍶鋇材料以及不同厚度磁性層中,鎳鐵氧/鈦酸鍶鋇的磁電耦合機制介。鐵電鈦酸鋇材料具壓電性而非線性順電鈦酸鍶鋇材料在相變點有極大的介電常數改變,而不同成分比之鈦酸鍶鋇其相變溫度亦不相同,藉由觀察在鐵電居禮溫度附近時磁性的改變,以探討雙層膜介面對多鐵性的影響。介面效應對於不同厚度其所占有整體效應不同,利用不同厚度的磁性層觀察其在鐵電相變溫度時磁性改變,以觀察介面效應對磁電耦合機制之影響。
鈦酸鍶鋇鐵電薄膜在不同比例時晶格常數不同。表面介電常數除受晶相影響外,亦隨應力改變。鎳鐵氧/鈦酸鍶鋇雙層膜應力逐漸減少時,其磁化量改變亦逐漸減少,顯示在磁電耦合效應中應力佔有相當重要的腳色。而在不同厚度磁性層系統中,可觀察到其磁化量改變量隨著磁性層厚度增加而減少,磁性層10 nm時磁化量變化量為25.46 emu/cm3,磁性層60 nm時磁化量變化量為0.16 emu/cm3。說明當磁性層達到一定厚度,其介面效應的影響降至可忽略的部分,所以其磁電效應不明顯。
In this study, the multiferroic properties of ferrimagnetic/ ferroelectric bilayer nano-composites were investigated. Ferroelectric films with different microstructures and dielectric properties were obtained by controlling the sputtering parameters. To discuss the magnetoelectric coupling mechanisms, NiFe2O4(NFO)/(Ba,Sr)TiO3(BST) bilayer structures were fabricated with various Sr concentration doping into BaTiO3. The dielectric constant of the nonlinear paraelectric BST varied significantly during the phase transition, while the ferroelectric BTO has high piezoelectric constant. The interface effect on the multiferroic properties are thus revealed through the change of magnetic properties at the ferroelectric Curie temperature.
The lattice constant of the BST films were different while the Ba and Sr ratio was changed. Surface dielectric constants were not only affected by the crystal phases, but also increased with the compressive strains. The stress varied with the Ba/Sr ratio, and affected the magnetoelectric properties. While Sr-addition was increased, the stress reduced, and the discontinuous change of magnetization at ferroelectric Curie temperature decreased. In NiFe2O4(NFO)/(BaTiO3)(BTO) system with different thickness of magnetic layer, the magnetoelectric coupling effect decreased with the increase of magnetic thickness. The variation of magnetization ∆M~0.16 emu/cm3 is observed in the NFO(60 nm)/BTO film near the ferroelectric Curie temperature. In contrast, due to the large interface effect, ∆M~25.46 emu/cm3 is obtained in the NFO(10 nm)/BTO bilayers. This phenomenon indicated that stress and interface effect played major roles in magnetoelectric coupling.
[1] H. Schmid, “Multi-ferroic magnetoelectrics” ,
Ferroelectrics 162, 317 (1994).
[2] N. A. Spaldin and M. Fiebig, “The Renaissance of
Magnetoelectric Multiferroics”, Science 309, 391
(2005).
[3]. N. A. Hill, “DENSITY FUNCTIONAL STUDIES OF
MULTIFERROIC MAGNETOELECTRICS”, Annu. Rev. Mater.
Res. 32, 1 (2002).
[4] Dzyaloshinskii I E, “On the magneto-electric effect
in antiferromagnets”, Sov. Phys.- JETP 10 628 (1959).
[5] Astrov D. N. , “Magnetoelectric effect in
antiferromagnetics”, Sov. Phys.-JETP 11 708 (1960).
[6] F. A. Smolenskiı˘, I. E. Chupis,
“Ferroelectromagnets”, Sov. Phys. Usp. 25, 475
(1982).
[7] J. Wang et al., ” Epitaxial BiFeO3 Multiferroic Thin
Film Heterostructures”, Science 299, 1719 (2003).
[8] Ce-Wen Nan et al., ” Multiferroic magnetoelectric
composites: Historical perspective, status, and future
directions”, Journal of applied physics 103, 031101
(2008).
[8] M. E. Lines, A. M. Glass, Principles and Applications
of Ferroelectrics and Related Materials, Clarendon
Press, Oxford (1977).
[9] C. H. Ahn,K. M. Rabe, J.-M. Triscone, Science, 303,
488 (2004).
[10] Srinivasan G, Hayes R and Bichurin M I Solid State
Commun. 128 261 (2003).
[11] Smolenskii G A and Chupis I E Sov. Phys. -Usp.25 475
(1982).
[12] Schmid H Int. J. Magn. 4 337 (1973).
[13] Hill NA, Filippetti A.J Magn Magn Mater;242–245:976.
(2002).
[14] Hill N A and Rabe K M Phys. Rev. B 59 8759 (1999).
[15] Baettig P and Spaldin N A Appl. Phys. Lett. 86
012505 (2005).
[16] Filippetti A and Hill N A J. Magn. Magn. Mater.236
176 (2001).
[17] van Aken B B and Palstra T T M Phys. Rev. B 69 134113
(2004).
[18] van Aken B B, Palstra T T M, Filippetti A and Spaldin
N A Nat. Mater. 3 164 (2004).
[19] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y
Phys. Rev. Lett. 92 257201 (2004).
[20] Chapon L C, Blake G R, Gutmann M J, Park S, Hur
N,Radaelli P G and Cheong S W Phys. Rev. Lett.
93177402 (2004).
[21] Efremov D V, van den Brink J and Khomskii D I
Nat.Mater. 3 853 (2004).
[22] Choi T and Lee J Appl. Phys. Lett. 84 5043 (2004).
[23] Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T
and Ito T J. Appl. Phys. 93 6990 (2003).
[24] Wang J et al Science 299 1719 (2003).
[25] T. Kimura et al., Nature 426, 55 (2003).
[26] T. Lottermoser et al., Nature 430, 541 (2004).
[27] H. Zheng et al., Science 303, 661 (2004).
[28] Ce-Wen Nan et al “Enhancement in magnetoelectric
response in CoFe2O4–BaTiO3 Heterostructure” Appll.
Phys. Lett. 92, 062911 (2008)
[29] Christian Binek et al., “Ferroelectric control of
magnetism in BaTiO3 /Fe heterostructures via
interface strain coupling” Phys. Rev. B 76, 092108
(2007)
[30] Brian James Laughlin, “Sputtered (BaX, Sr1-X)TiO3,
BST, Thin Films On Flexible Copper Foils For Use As A
Non-Linear Dielectric” , North Carolina State
University, Doctor of Philosophy (2006)
[31] Jack C. Burfoot and George W. Taylor, "Polar
dielectrics and their applications ". Los Angeles,
CA: University of California Press. (1979).
[32] W. G. Cady, “Piezoelectricity”, McGraw-Hill Book
Co. , New York (1946) .
[33] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura,
“An introduction to the physics of ferroelectrics”,
Gordon and Breach Science Publishers, New York,
(1976).
[34] 吳朗, “電子陶瓷-介電”, 全欣資訊圖書 (1994) .
[35] 張凱勛,“鋯鈦酸鉛(Pb(ZrTi)O3, PZT)鐵電材料之奈米電域極
化及反轉研究”,成功大學,碩士論文,(2006) .
[36] Kenji Uchino. Ferroelectric Devices, Materials
Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
[37] A. F. Devonshire, "Theory of Ferroelectrics,"
Advances in Physics, 3[10] 85-130.(1954).
[38] B. Jaffe, W. R. Cook, Jr. and H. Jaffe,
“Piezoelectric ceramics”, Academic Press, India,
(1971) .
[39] Y. Xu, “Ferroelectric Materials and Their
Applications”, North- Holland, Netherlands, (1991) .
[40] 薛宇航, “鈦酸鍶鋇與鋯鈦酸鉛之人工晶格薄膜研究” ,清華
大學, 碩士論文, (2005) .
[41] 汪建明,1999,"Ceramic techonlogy handbook",中華民國
產業科技發展協進會,中華名國粉末治金協會,頁403-430,
六月。
[42] Y. Xu, “Ferroelectric Materials and Their
Applications”, North- Holland, Netherlands, (1991) .
[43] G. A. Smolenskii and
K.I.Rozgachev, "Segnetoelektricheskie Svoistva
Tverdykh Rastvorov V Sisteme Titanat Bariya Titanat
Strontsiya," Zhurnal Tekhnicheskoi Fiziki, 24[10]1751-
1760.(1954).
[44] 稽煥佩,“NiFe薄膜與NiFe/IrMn交換場系統之鐵磁共振現象研
究” ,成功大學,碩士論文,(2006)
[45] 宛得福 “磁性物理” 序論,第一章 電子工業出版社 (1985)
[46] George Economos “Magnetic Ceramics: I, General
Methods of Magnetic Ferrite Preparation” Journal of
the American Ceramic Society v.38 n.7 (1955) p.241~244
[47] 黃忠良 譯 “磁性陶瓷” 第三章 復漢出版社 (1992)
[48] Richard A. Eppler “Nickel Spinels” Ceramic Bulletin
v.61 n.8 (1982) p.847~850
[49] Ohring, M., The Materials Science of Thin Films,
Academic Press, California, U.S.A., Chap. 5, pp. 212-
216, 2002.
[50] M. S. Tsai ,S. C. Sun ,T. Y. Tseng , “Effect of
oxygen to argon ratio on properties of (Ba,Sr)TiO3
thin films prepared by radio-frequency magnetron
sputtering “ J. Appl. Phys. 82, 3482 (1997)
[51] C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K.
Kang, S. I. Lee, and M. Y. Lee, “Deposition of
extremely thin (Ba,Sr)TiO3 thin films for ultra-large-
scale integrated dynamic random access memory
application” Appl. Phys. Lett. 67, 2819 (1995)
[52] R. M. Waser, J. Am. Ceram. Soc. 72, 2234 (1989)
[53] M. Alexe ,A. Gruverman ,”Nanoscale Characterisation
of Ferroelectric Materials” ,springer , (2004) 1~3
[54] 洪從軒,“鎳鐵/鈦酸鍶鋇、鎳鐵/鈦酸鋇雙層膜系統之多鐵性
研究” ,成功大學,碩士論文,(2007)