簡易檢索 / 詳目顯示

研究生: 張家齊
Chang, Chia-Chi
論文名稱: 雙層鋸齒奈米石墨帶的磁電子性質
Magnetoelectronic properties of bilayer zigzag graphite nanoribbon
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 35
中文關鍵詞: 石墨帶鋸齒石墨帶
外文關鍵詞: nanoribbon, bilayer, zigzag graphite
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文之中,我們以緊束模型研究以鋸齒狀切割之一維雙層奈米石墨帶
    在各種磁場下的電子的能帶結構及態密度。我們使用各種外加磁場與兩種石墨
    帶寬度,看到了許多相應的物理量產生變化。外加磁場會造成準藍道能階的出
    現,而石墨帶寬度影響到準藍道能階以否產生。
    另外,我們也發現了一維雙層奈米石墨帶與一維單層奈米石墨帶的與多不同
    性質。包括價帶與導帶中能帶階分成兩群,以費米能為中心上下不對稱,準藍
    道能階對磁場的關係與費米能附近的平坦能帶會打開成兩條等。

    In this thesis, the magnetoelectronic properties of the AB-stacked bilayer zigzag
    graphite nanoribbon are investigated by the tight-binding model. By changing the
    external magnetic field or the width of the nanoribbon, we could see some changes in
    band structure and density of states. The appearance and the width of the
    quasi-Landau level in band structure are controlled by the external magnetic field and
    the width of the nanoribbon.
    We also found some differences between monolayer and bilayer AB-stacked
    zigzag graphite nanoribbon. For bilayer AB-stacked zigzag graphite nanoribbon :
    There are two groups of parabolic energy bands in conduction and valence bands.
    There is no symmetry to EF=0 between conduction and valence bands. There are two
    partial flat bands which is caused by the interactions between layers.

    中文摘要………………………………………………………………...…………….I Abstract………………………………………………………………………..……...II 誌謝……………………………………………………………………………..…...III 目錄……………………………………………………………………………….....IV 圖目錄…………………………………………………………………………..……V 第一章 導論…………………………………….……………………………..……1 第二章 理論模型………………………………………………………………..….3 2-1 鋸齒狀石墨帶的幾何結構……………………………………………….…3 2-2 鋸齒狀石墨帶的A,B 位置………………………………………….……4 2-3 AB 堆疊(AB-staked)…………………………………………………............7 2-4 緊束模型(The tight-binding model)………………………………..……….10 第三章 結果與討論………………………………..………………………..…….17 第四章 結論………………………………………………………….………..…..34 參考文獻…………………………………………………………………….………35

    [1] J.C. Charlier, J. P. Michenaud, et. Al, Phys. Rev. B 44, 13237 (1991).
    [2] R. Ahuja, S. Auluck, J. Trygg, et al., Phys. Rev. B 51, 4183 (1995).
    [3] J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43 4579 (1991).
    [4] J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32 289 (1994).
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.
    V. Grigorieva, and A. A. Firosov, Science 306 666 (2004).
    [6] Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J.
    Mat.Chem. 14 469 (2004).
    [7] R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon
    nanotubes, Imperial College Press (1998).
    [8] C. G. Rocha, M. Pacheco, Z. Barticevic, and A. Latge, Phys. Rev. B 70 233402
    (2004).
    [9] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54,
    17954 (1996).
    [10] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65,
    1920 (1996).
    [11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
    Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    [12] V. Barone, O. Hod, and G. E. Scuseria, Nano Lett. 6, 2748 (2006).
    [13] Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
    [14] Eduardo V. Castro, K. S. Novoselov, et al, Phys. Rev. Lett. 99, 216802 (2007)
    [15] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77, 085426
    (2008).

    下載圖示 校內:2010-02-05公開
    校外:2010-02-05公開
    QR CODE