簡易檢索 / 詳目顯示

研究生: 蘇鵬宇
Su, Peng-Yu
論文名稱: 氧化銦鎵鋅透明薄膜電晶體之研製
Fabrication and Analysis of Indium Gallium Zinc Oxide Transparent Thin Film Transistors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 64
中文關鍵詞: 氧化銦鎵鋅薄膜電晶體
外文關鍵詞: IGZO, TFT
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研製並探討不同絕緣層對氧化銦鎵鋅(IGZO)薄膜電晶體之影響。第一部分的實驗中,我們分別使用100奈米、200奈米之五氧化二鉭(Ta2O5)與200奈米之二氧化矽(SiO2)做為無機材料之絕緣層用來製作氧化銦鎵鋅薄膜電晶體。三顆元件之次臨界擺幅分別為0.98、0.61、1.41V/dec。電子遷移率分別為20.59、61.5、8.18 cm2V-1s-1。電流開關比分別為13.6、105以及8.1x104。臨界電壓分別為-0.5、0.25以及1.6V。由於較低之漏電流以及較高之介電係數,以200奈米五氧化二鉭作為絕緣層之薄膜電晶體擁有較好之元件特性。
    第二部分的實驗中,我們以旋轉塗佈之方法以有機PVP材料做為氧化銦鎵鋅薄膜電晶體之絕緣層。不同重量比例之PVP與交聯劑PMF(20:1、10:1與5:1)分別被使用做絕緣層。三顆元件之次臨界擺幅分別為0.53、0.69、1.09V/dec。電子遷移率分別為22.87、16.9、13.07 cm2V-1s-1。電流開關比分別為7.3x103、4x105以及1.7x102。臨界電壓分別為2、1.6以及1.9V。由於較平坦表面和較高的絕緣層電容值,使用PVP:PMF比例為20:1之絕緣層的元件擁有比較好之次臨界擺幅和電子遷移率。而使用PVP:PMF比例為10:1有較好之電流開關比。

    In this thesis, amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) with different kinds of dielectric layers were fabricated and investigated. In the first part of our experiments, 100 nm and 200 nm Ta2O5 and 200 nm SiO2 thin films were used as inorganic dielectric layers for a-IGZO TFTs. The subthreshold swings (ss) of three devices were 0.98, 0.61 and 1.41 V/dec, respectively. The carrier mobilities were 20.59, 61.5, and 8.18 cm2V-1s-1 , respectively. On/off current ratios were 13.6, 105 and 8.1x104, respectively. The threshold voltages were -0.5, 0.25 and 1.6V, respectively. Because of the lower leakage current and higher κ value, a-IGZO TFT with a 200 nm Ta2O5 dielectric layer had better performances.
    In the second part of our experiment, spin-coated organic PVP layers were used as dielectric layers for a-IGZO TFTs. Different weight ratio of PVP and cross-linking agent, PMF (i.e. 20:1, 10:1 and 5:1) were used in this work. The subthreshold swings (ss) of three devices were 0.53, 0.69 and 1.09 V/dec, respectively. The carrier mobilities were 22.87, 16.9, and 13.07 cm2V-1s-1. On/off current ratios were 7.3x103, 4x105 and 1.7x102, respectively. The threshold voltages were 2, 1.6 and 1.9V, respectively. The TFT with PVP: PMF ratio 20:1 has better ss and mobility because in TFT with PVP: PMF ratio 20:1, the PVP layer has the best surface roughness and higher capacitance. Moreover, it was found that the TFT with PVP: PMF ratio of 10:1 has better on/off ratio.

    Abstract (in Chinese) I Abstract (in English) III Contents…………………………………………………………...V Table Captions…………………………………………………..VII Figure Captions………..............................................................VIII Chapter 1 Introduction 1 1.1 Overview of a-IGZO 1 1.2 Overview of High-κ Material 3 1.3 Overview of Poly(4-vinylphenol) (PVP) 4 1.4 Background of Thin Film Transistors 5 1.5 Background of Flexible Electronics 6 Chapter 2 Fabrication System and Important Parameters 14 2.1 Fabrication System 14 2.1.1 RF Sputtering System 14 2.1.2 Hall Measurement System 16 2.1.3 Atomic Force Microscopes 17 2.1.4 Field Emission Scanning Electron Microscopy (FESEM) 17 2.1.5 X-ray Diffraction Analysis (XRD) 19 2.2 Important Parameters 21 2.2.1 Field-Effect Mobility 21 2.2.2 Threshold Voltage (VT) 22 2.2.3 On/off current Ratio (Ion/off) 22 2.2.4 Subthreshold Swing (ss) 22 Chapter 3 a-IGZO TFTs with Ta2O5 dielectric layers 26 3.1 Introduction 26 3.2 Fabrication of a-IGZO TFTs with Ta2O5 dielectric layers 27 3.3 Hall measurement and XRD of a-IGZO thin film 28 3.4 Elemental analysis of Ta2O5 29 3.5 Analysis of AFM 30 3.6 C–V and J-V characteristics of Ta2O5 thin film 30 3.7 Transmittance of Ta2O5 and a-IGZO thin film 31 3.8 Current-voltage (I-V) characteristics of a-IGZO TFTs with Ta2O5 dielectric layers 31 Chapter 4 a-IGZO TFTs with PVP dielectric layers 46 4.1 Introduction 46 4.2 Fabrication of a-IGZO TFTs with PVP dielectric layers 47 4.3 Physical properties of a-IGZO TFTs 48 4.4 Analysis of FTIR 49 4.5 Transmittance of PVP and a-IGZO thin film 49 4.6 Current-voltage (I-V) characteristics of a-IGZO TFTs with PVP dielectric layers 50 Chapter 5 Conclusion and future work 60 5.1 Conclusion 60 5.2 future works 61

    Chapter 1
    [1] N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials(Clarendon, Oxford, 1979).
    [2] Hideo Hosono, J. Non-Cryst. Solids 352, 851–858 (2006).
    [3] Hosono, H. et al., J. Non-Cryst. Solids 198–200, 165–169 (1996).
    [4] Orita, M. et al., Phil. Mag. B 81, 501–515 (2001).
    [5] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, Nature, VOL 432 , 488-492 (2004).
    [6] GD Wilk, RMWallace and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
    [7] Seong-Ho Kim, Sung-Eun Kim, Joo-Han Park, Sung-Hoan Kim and Myung-Soo Kim, J. Korean Phys. Soc.43, 868 (2003).
    [8] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S.Gopalan, K. Onishi and J. C. Lee, IEEE Electron Device Lett. 21 (2000).
    [9] B. H. Lee, L. Kang, R. Nieh and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
    [10] M. A. Quevedo-Lopez, M. El-Bouanani and B. E. Gnade, J. Appl. Phys. 92, 3540 (2002).
    [11] Kyu-Seong Hwang, Young-sun Jeon, Sang-Bok Kim, Chi-Kyun Kim and Jeong-Sun Oh, J. Korean Phys Soc. 43, 754 (2003).
    [12] H. Y. Yu, N. Wu, M. F. Li, Chunxiang Zhu and B. J. Cho, Appl. Phys. Lett. 81, 3618 (2002).
    [13] H.H. Zhang, C.Y. Ma, Q.Y. Zhang, Vacuum 83, 1311–1316 (2009).
    [14] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, Appl. Phys. Lett. 94, 142107 (2009).
    [15] Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, Young-Bae Kim, Duck-Kyun Choi, Thin Solid Films 517, 4115–4118 (2009).
    [16] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 93, 242111 (2008).
    [17] Janos Veres, Simon Ogier, and Giles Lloyd, Dago de Leeuw, Chem. Mater., 16, 4543-4555 (2004).
    [18] Hagen Klauk, Marcus Halik, Ute Zschieschang, Gu¨ nter Schmid, and Wolfgang Radlik, Werner Weber, J. Appl. Phys. 92, 9, (2002).
    [19] Joo Hyon Noh, Chang Su Kim, Seung Yoon Ryu, and Sung Jin Jo, Jpn. J. Appl. Phys., Vol. 46, No. 7A, 4096–4098 (2007).
    [20] P.K. Weimer, Proc. IEEE vol.50, 1462, (1963).
    [21] F. V. Shallcross, Cadmium selenide thin-film transistors, Proc. IEEE vol.51, 851, (1964).
    [22] Hoonha Jeon, Ved Prakash Verma, Sookhyun Hwang, Sooyeon Lee, Chiyoung Park, Do-Hyun Kim, Wonbong Choi, and Minhyon Jeon, Jpn. J. Appl. Phys., Vol. 47, No. 1 , 87–90 (2008).
    [23] Yeon-Keon Moon, Dae-Yong Moon, Sih Lee, Sang-Ho Lee, and Jong-Wan Park, Chang-Oh Jeong, J. Vac. Sci. Technol. B 26, 4, 1472, (2008).
    [24] Chensha Li, Yuning Li, Yiliang Wu, Beng S. Ong, Rafik O. Loutfy, J. Appl. Phys. 102, 076101 (2007).
    [25] Wantae Lim, E. A. Douglas, S.-H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, and W. H. Chang, Appl. Phys. Lett. 93, 252103 (2008).
    [26] Wantae Lim, Jung Hun Jang, S.H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, Appl. Phys. Lett. 93, 082102 (2008).
    [27] H. Kumomi, K. nomura, T. Kamiya, and H. Hosono, Thin Solid Films, vol. 516, no. 7, 1516-1522 (2008).
    Chapter 2
    [1] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131 (1978).
    [2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380 (1996).
    [3] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 (1995).
    [4] 成大微奈米中心儀器設備介紹, “http://140.116.176.21/www/technique/instrument/JSM6700.htm“
    [5] B.D. Cullity, Elements of X-ray diffraction, 2nd ed, Addison Wesley, Canada, (1978).
    [6] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, (2003)
    Chapter 3
    [1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, vol. 300, 1269–1271 (2003).
    [2] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, vol. 516, 5899–5902, (2008).
    [3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, vol. 432, 488–492, (2004).
    [4] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, IEEE Tran. Electron. Dev., vol. 56, 2165–2168, (2009).
    [5] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. J. Appl. Phys., vol. 48, 031301, (2009).
    [6] W. Andreoni and C. A. Pignedoli, Appl. Phys. Lett., vol. 96, 062901, (2010).
    [7] G. S. Oehrlein, F. M. d’Heurle, and A. Reisman, J. Appl. Phys., vol. 55, 3715–3725, (1984).
    [8] R. J. Cava, J. J. Krajewski, W. F. Peck et al., J. Appl. Phys., vol. 80, 2346–2348, (1996).
    [9] C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, Organic Electronics, vol. 3, 65–72, (2002).
    [10] C. Xu, Y. Qiang, Y. Zhu, J. Shao, Z. Fan, and J. Han, Optics & Laser Tech., vol. 42, 497–502, (2010).
    [11] Yeon-Keon Moon, Sih Lee, Jong-Wan Park, Do-Hyun Kim, Je-Hun Lee and Chang-Oh Jeong, J. Korean Phys Soc., Vol. 54, No. 1, 121 (2009).
    [12] Jaeyoung Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, J. Appl. Phys. Vol 89, 15 (2001).
    [13] Jae Sang Lee, Seongpil Chang, Sang-Mo Koo, and Sang Yeol Lee, IEEE Electron Device Lett., Vol. 31, No. 3, (2010).
    [14] P. F. Carcia, R. S. McLean, M. H. Reilly, M. K Crawford, E. N. Blanchard, A. Z. Kattamis and S. Wagner, J. Appl. Phys., 102, 074512 (2007).
    Chapter4
    [1] Hideo Hosono, J. Non-Cryst. Solids 352, 851–858 (2006).
    [2] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi,Eisuke Tokumitsu, irotaka Yamaguchi, and Setsuo Kaneko, Jpn. J. Appl. Phys. 48, 081607 (2009).
    [3] Kazushige Takechi, Mitsuru Nakata, Toshimasa Eguchi, Hirotaka Yamaguchi, and Setsuo Kaneko, Jpn. J. Appl. Phys. 48, 011301 (2009).
    [4] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, Nature, Vol 432, (2004).
    [5] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. 93, 242111 (2008).
    [6] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, Appl. Phys. 94, 142107 (2009).
    [7] Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, Young-Bae Kim, Duck-Kyun Choi, Thin Solid Films 517, 4115–4118 (2009).
    [8] Hagen Klauk, Marcus Halik, Ute Zschieschang, Gunter Schmid, and Wolfgang Radlik, Werner Weber, J. Appl. Phys. Vol 92, 9, (2002).
    [9 ] Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim and Hong Koo Baik, Appl. Phys. Lett. 89, 133507 (2006).
    [10] Seokhwan Bang, Seungjun Lee, Sunyeol Jeon, Semyung Kwon, Wooho Jeong, Honggyu Kim, Iksup Shin, Ho Jung Chang, Hyung-ho Park and Hyeongtag Jeon, Semicond. Sci. Technol. 24, 025008 (2009).
    [11] Jang Y, Kim DH, Park YD, Cho JH, Hwang M, Cho KW,Appl. Phys. Lett., 87, 152105 (2005).
    Chapter 5
    [1] Patrick Wellenius, Arun Suresh, Haojun Luo, Leda M. Lunardi, and John F. Muth, J. of Display Tech., Vol. 5, No. 12, (2009).
    [2] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi, Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko, Jpn. J. Appl. Phys. 48, 081607 (2009).
    [3] Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Lett., Vol. 56, No. 7, (2009).
    [4] Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Lett., Vol. 31, No. 4, 317 (2010).
    [5] Hyun Soo Shin, Byung Du Ahn, Kyung Ho Kim, Jin-Seong Park, Hyun Jae Kim, Thin Solid Films, 517, 6349, (2009).
    [6] Jae Sang Lee, Seongpil Chang, Sang-Mo Koo, and Sang Yeol Lee, IEEE Electron Device Lett., Vol. 31, No. 3, (2010).
    [7] Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, Young-Bae Kim, Duck-Kyun Choi, Thin Solid Films 517, 4115–4118 (2009).
    [8] Sang Yeol Lee, Seongpil Chang, Jae-Sang Lee, Thin Solid Films, 518, 3030–3032 (2010).

    無法下載圖示 校內:2015-07-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE