| 研究生: |
許晉維 Hsu, Jin-Wei |
|---|---|
| 論文名稱: |
多孔性硫酸鈣性質研究 Investigation of properties of porous calcium sulfate |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 多孔性 、硫酸鈣 、支架 |
| 外文關鍵詞: | scaffolds, Calcium Sulfate, porous |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨組織工程是利用多孔性支架來運載細胞、基因和蛋白質等生物因子而使骨再生,多孔性支架必須要具有兩項功能才能夠確保骨缺陷可以成功地被治癒,多孔性支架必須要擁有足夠的孔隙度才能夠運載生物因子,並且在植入時必須要能夠提供暫時性的強度。
硫酸鈣具有良好的生物相容性以及引骨性,硫酸鈣不貴且被運用在填補各種骨缺陷是暨安全又方便的,而多孔性硫酸鈣的缺點是強度比較低,本實驗在於探討如何增加多孔性硫酸鈣的強度。
本研究是利用鹽溶-瀝出法(salt leaching)製造硫酸鈣支架,此硫酸鈣支架的強度約為5MPa,然後再將此硫酸鈣支架先浸泡C 溶液,再浸泡G 溶液,希望藉此形成H 的薄膜,並且增加硫酸鈣支架的強度。
Bone tissue engineering utilizes porous biomaterial scaffolds to deliver biofactors including cells, genes, and proteins to regenerate bone. Porous biomaterial scaffolds must fulfill two primary functions to ensure successful treatment of bone defect. The scaffold must have enough porosity in order to deliver biofactors and provide temporary mechanical support.
Calcium sulfate has superior biocompatibility and osteoconductivity. It is inexpensive and can be used safely and conveniently in a wide variety of bone defects. But the drawback of porous calcium sulfate is its low strength. This study is about how to increase its strength.
This study uses salt-leaching to produce porous calcium sulfate and its compressive strength is about 5MPa. And then this porous scaffold is successively immersed in C solution and G solution in order to form H thin film and increase porous scaffold's compressive strength.
A.G. Mikos, J.S. Temenoff. Formation of highly porous biodegradable scaffolds for tissue engineering. Journal of Biotechnology, 2000.
A.S. Myerson. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
B.D. Cullity. Elements of x-ray diffraction. Reading, Mass. :Addison-Wesley Pub. Co.,c1978.
B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials science. Academic Press, California, 1996;222-223.
B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S.Ryu, S.S. Chung and K.W. Park. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials, p1291-1298, 2000.
C. Vellmer, B. Middendorf and N. B. Singh. Hydration of α-hemihydrate in the presence of carboxylic acids. Journal of Thermal Analysis and Calorimetry, Vol. 86 (2006) 3, 721–726.
De’an Yang, Zi Yang, Xu Li, Li-Zhi Di, Hong Zhao. A study of hydroxyapatite/calcium sulphate bioceramics. Ceramics International, p1021-1023, 2005.
D. Hutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21 2529-2543, 2000.
D. Lacroix, A. Chateau, M.P. Ginebga, J.A. Planell. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, p5326-5334, 2006.
D.M. Liu. Fabrication of Hydroxyapatite Ceramic with Controlled Porosity. J. Mater. Sci. Mater. Med., 8 227–232, 1997.
D.M. Liu. Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramics. Cer. Int., p135-139, 1997.
D. Tadic, M. Epple. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparision to natural bone. Biomaterials, p987-994, 2004.
E.J. Mackie. Osteoblasts: novel roles in orchestration of skeletal architecture. The International Journal of Biochemistry and Cell Biology, p1301-1305, 2003.
E. Landi, A. Tampieri, G. Celotti, R. Langenati, M. Sandri, S. Sprio. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials, p2835-2845, 2005.
E. Lerouxel, P. Weiss, B. Giumelli, A. Moreau, P. Pilet, J. Guicheux, P. Corre, J.M. Bouler, G. Daculsi and O. mallard. Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rates. Biomaterials, p4566-4572, 2006.
H.K. Hockin, J.B. Quinn, S. Takagi, L.C. Chow, F.C. Eichmiller. Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties. J. Biomed Mater Res, p457-466, 2001.
H.K. Varma, S.N. Kalkura and R. Sivakumar. Polymeric precursor route for the preparation of calcium phosphate compounds. Ceramics International, p467-470, 1998.
H.K. Varma, S. Suresh Babu. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceramics International, p109-114, 2005.
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
http://zone.ni.com/devzone/cda/tut/p/id/2870
H. Yuan, K. Kurashina, J.D. de Bruijn, Y. Li, K. De Groot and X. Zhang. A preliminare study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, p1799-1806, 1999.
I. Sopyan, M. Mel, S. Ramesh, K.A. Khalid. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials, p116-123, 2007.
J.B. Park. Biomaterials: An Introduction. Plenum Press. New York, 1979.
J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
J.I. Goldstein. Scanning electron microscopy and x-ray microanalysis. New York :Kluwer Academic/Plenum Publishers, 2003.
J.L. Burg, Scott Porter, J.F. Kellam. Biomaterial developments for bone tissue engineering. Biomaterials, p2347-2359, 2000.
J.O. Hollinger, T.A. Einhorn, B.A. Doll and C. Sfeir, Bone tissue engineering. CRC press, 2005.
Joerg-Ruediger Hill, Johann Plank. Retardation of setting of plaster of paris by organic acids: understanding the mechanism through molecular modeling. J. Comput Chem, p1438-1448, 2004.
K.A. Hing, L.F. Wilson and Thomas Buckland. Comparative performance of three ceramic bone graft substitutes. The Spine Journal, p475-490, 2007.
K.A. Hing, S. M. Best, and W. Bonfield. Characterization of porous hydroxyapatite. J. Mater. Sci. Mater. Med., 10 135–145, 1999.
K.A. Hing, S. M. Best, K. E. Tanner, W. Bonfield, and P. A. Revell. Mediation of Bone Ingrowth in Porous Hydroxyapatite Bone Graft Substitutes,’ J. Biomed. Mater. Res. A, 68 187–200, 2004.
K.A. Hing. Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. Int. J. Appl. Ceram. Technol., 2 184–199, 2005
K. Christel, K. de Groot, W. Chen, Y. Li and X. Zhang. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissue. Biomaterials, p31-34, 1994.
K. Hing, B. Annaz, S. Saeed, P. Revell, and B. T. Microporosity Enhances Bioactivity of Synthetic Bone Graft Substitutes. J. Mater. Sci. Mater. Med., 16 467-475, 2005.
L. Amathieu and R. Boistelle. Improvement of the mechanical properties of set plasters by means of four organic additives inducing {-101} faces. J. Crystal Growth, p169-177, 1986.
L. Chong, L. Zhaoyang, De’an Yang, L. Yuanyuan, Y. Zi and W.L. William. Synthesis of calcium phosphate/calcium sulphate powder. Materials Chemistry and Physics, p285-289, 2004.
L.L. Hench and J. Wilson. An Introduction to Bioceramics. World Scientific, Singapore, 1993.
L.L. Hench. Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
M.A. Rauschmann, T.A. Wichelhaus, V. Stirnal, E. Dingeldein, L. Zichner, R. Schnettler, V. Alt. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials, p2677-2684, 2005.
M.Bohner. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
M. Borden, M. Attawia, Y. Khan and C.T. Laurencin. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials, p551-559, 2002.
M. Fabbi, G.C. Celotti and A. Raraglioli. Hydroxyapatite-based porous aggregates: Physico-chemical nature, structure, texture and architecture. Biomaterials, p225, 1995.
M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer and A.G. Mikos. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials,p175-185, 1996.
M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer and A.G. Mikos. In vitro degradation of a poly(propylene fumarate) based composite materials. Biomaterials,p2127-2130, 1996.
M. Milosevski, J. Bossert, D. Milosevski, N. Gruevska. Preparation and properties of dense and porous calcium phosphate. Ceramics International, p693-696, 1999.
M.M. Rashad, M.H.H. Mahmoud, I.A. Ibrahim, E.A. Abdel-Aal, Crystallization of calcium sulfate dehydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions. J. Crystal Growth, p372-379, 2004.
M. Nilsson, J-S. Wang, L. Wielanek, K.E. Tanner and L. Lidgren. Biodegradation and biocompatibility of a calcium sulphate-hydrosyapatite bone substitute. J. Bone Joint Surg, p120-125, 2004.
M.P.C. Weijnan and G.M. Van Rosmalen. Adsorption of phosphonates on gypsum crysrals. J. Crystal Growth, p157-168, 1986.
M.R. Urist, B.T. O'Connor, R.G. Burwell. Bone grafts, derivatives and substitutes. Oxford ;Butterworth-Heinemann,c1994.
N.B. Singh, B. Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53 57-77, 2007.
P.X. Ma, J.H. Elisseeff. Scaffolding in tissue engineering. Boca Raton :Taylor & Francis/CRC Press,2006.
R.P. del Real, J.G.C. Wolke, M. Vallet-Regi, J.A. Jansen. A new method to produce macropores in calcium phosphate cements. Biomaterials, p3673-3680, 2002.
S.A. Guelcher, J.O. Hollinger. An introduction to biomaterials. Boca Raton, FL :CRC/Taylor & Francis,2006.
S.K. Hamdona, U.A. Al Hadad. Crystallization of calcium sulfate dihydrate in the presence of some metal ions. J. Crystal Growth, p146-151, 2007.
S.F. Hulbert, L.L.Hench, D.Forbers, L.S. Bowman. History of bioceramics. Ceram Internat 8: 131-140, 1982.
S.F. Hulbert, S.J. Morrison, and J. J. Klawitter. Tissue Reaction to Three Ceramics of Porous and Non-Porous Structures. J. Biomed. Mater. Res., 6 347-374, 1972.
S.M. Warren, K.D. Fong, R.P. Nacamuli, H.M. Song, T.D. Fang and M.T. Longaker. Biomaterials for skin and bone replacement and repair in plastic surgery. Operative technique in plastic and reconstructive surgery, p10-15, 2003.
S.S. Kim, M.S. Park, O. Jeon, C.Y. Choi, B.S. Kim. Poly(lactide-co-glycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, p1399-1409, 2006.
W.E. Katstra, R.D. Palazzolo, C.W. Rowe, B. Giritlioglu, P. Teung and M.J. Cima. Oral dosage forms fabricated by three dimensional printing. Journal of controlled release, p1-9, 2000.
W.R. Moore, S.E. Graves, G.I. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
W. Suchanek, M. Yashima, M. Kakihana and M. Yoshimura. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers. Biomaterials, p1715-1723, 1996.
Z. Yang, H. Yuan, P. Zou, W. Tong, S. Qu and X. Zhang. Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorphological study in dogs. J. Mat. Sci Mat. Med., p697-701, 1997.
楊榮森, Edwards, 基本骨科學與創傷學, 合記圖書出版社, 43-47, 2001
楊榮森,B. Salter, 骨骼肌肉系統疾病和創傷, 合記圖書出版社, 7-17, 2002.
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991.
王盈錦, 生物醫學材料, 合記圖書出版社, 2002
林峰輝, 王正一, 教育部, 2000
陳百萬, 生物醫學工程學,科學出版社, 1997
校內:2107-07-30公開