| 研究生: |
簡翊婷 Chien, I-Ting |
|---|---|
| 論文名稱: |
銅離子引發綠色螢光蛋白發光團類似物環化反應:副反應探討 Copper-ion-induced Cyclization Reaction of Green Fluorescent Protein Chromophore Derivatives:Side Reaction Investigation |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 銅離子(II) 、環化反應 、副反應 |
| 外文關鍵詞: | copper(II), cyclization, side reaction |
| 相關次數: | 點閱:52 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去,實驗室的黃世昱學長將綠色螢光蛋白發光團衍生物o-DHPBDI與銅(II)試劑進行反應,而在養晶的過程中得到了環合的產物DHPIO,其相較於尚未反應前的o-DHPBDI,提升一些螢光量子產率,但相比過去眾多各種銅離子所引發的環化反應,此反應的產率較為不理想。
本文針對此環化反應做深入的探討,我們透過再結晶的方式去發掘反應中可能產生的額外產物以及其實際結構,藉由這些產物去推論反應中可能進行的其他路徑,進而解釋產率不佳的問題。
在此我們發現過去銅離子試劑使用的錯誤外,也發現了在預期產物DHPIO其2號甲基上接上氯的產物,該產物不僅大量且也無可避免的生成,是最主要造成環化產物DHPIO產率不佳的因素。另外,環化後的產物在吸收光譜與放射光譜上皆呈現藍移,但也提升了螢光量子產率,而針對兩種氯化產物和預期產物做比對,三者在吸收光譜的結果上相似,但在螢光光譜上,氯的增加會導致放射波長越藍移。
In the past, lab senior Shih-yu Huang reacted the green fluorescent protein chromophore derivative o-DHPBDI with a copper(II) reagent and obtained a cyclized product, DHPIO, through crystallization. This product showed a improvement in fluorescence quantum yield compared to the unreacted o-DHPBDI. However, the yield of this reaction was not ideal compared to other cyclization reactions induced by various copper ions in the past. This study conducts an in-depth investigation of this cyclization reaction. Using recrystallization, we investigated the potential byproducts and their actual structures to identify other possible reaction pathways, which helped explain the low yield issue. In our research, we not only found errors in the copper ion reagent used previously but also identified a chlorinated product with a chlorine attached to the 2-methyl position of the expected product DHPIO. This chlorinated product is abundant and inevitably forms, becoming the primary factor in low yield of DHPIO. Furthermore, after cyclization, the products exhibit a blue shift in both the absorption and emission spectra, while also showing an increase in fluorescence quantum yield. And a comparison between the two chlorinated products and the expected product showed that their absorption spectra were similar, while in the fluorescence spectra, an increase in chlorine leads to a blue shift in the emission wavelength.
1. Chen, Y. H., Lo, W. J., and Sung, K., Synthesis, photophysical properties, and application of o-and p-amino green fluorescence protein synthetic chromophores. The Journal of Organic Chemistry, 2013, 78(2), 301-310.
2. 黃世昱, 具有鄰位氨基丙烷-2,3-二醇側鏈的綠色螢光蛋白發光團: 合成、性質及應用, 2021, 碩士論文, 國立成功大學化學系.
3. Tsien, R. Y., The green fluorescent protein. Annual review of biochemistry, 1998, 67(1), 509-544.
4. Yang, J. S., et al., Photoisomerization of the green fluorescence protein chromophore and the meta-and para-amino analogues. Chemical communications, 2008, 11, 1344-1346.
5. Stafforst, T. and Diederichsen, U., Synthesis of Alaninyl and N‐(2‐Aminoethyl) glycinyl Amino Acid Derivatives Containing the Green Fluorescent Protein Chromophore in Their Side Chains for Incorporation into Peptides and Peptide Nucleic Acids. 2007, Wiley Online Library.
6. Ferreira, J. R., et al., Locking the GFP Fluorophore to Enhance Its Emission Intensity. Molecules, 2022, 28(1), 234.
7. Hsu, Y. H., et al., Locked ortho-and para-Core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. Journal of the American Chemical Society, 2014, 136(33), 11805-11812.
8. Baranov, M. S., et al., Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins. Journal of the American Chemical Society, 2012, 134(13), 6025-6032.
9. Kovács, E., et al., Synthesis and Fluorescence Mechanism of the Aminoimidazolone Analogues of the Green Fluorescent Protein: Towards Advanced Dyes with Enhanced Stokes Shift, Quantum Yield and Two‐Photon Absorption. European Journal of Organic Chemistry, 2021, 2021(41), 5649-5660.
10. Kumar, Y., Jaiswal, Y., and Kumar, A., Copper (II)-Catalyzed Benzylic C (sp3)–H Aerobic Oxidation of (Hetero) Aryl Acetimidates: Synthesis of Aryl-α-ketoesters. The Journal of Organic Chemistry, 2016, 81(24), 12247-12257.
11. Lu, J., et al., Copper-catalyzed aerobic oxidative intramolecular alkene C–H amination leading to N-heterocycles. Organic Letters, 2011, 13(14), 3694-3697.
12. Tang, B. X., et al., Copper-catalyzed intramolecular C− H oxidation/acylation of formyl-N-arylformamides leading to indoline-2, 3-diones. Journal of the American Chemical Society, 2010, 132(26), 8900-8902.
13. Wang, Z., Kuninobu, Y., and Kanai, M., Copper-catalyzed intramolecular N–S bond formation by oxidative dehydrogenative cyclization. The Journal of Organic Chemistry, 2013, 78(14), 7337-7342.
14. Yang, T., et al., Synthesis of CF3-Substituted 1, 6-Dihydropyridazines by Copper-Promoted Cascade Oxidation/Cyclization of Trifluoromethylated Homoallylic N-Acylhydrazines. The Journal of Organic Chemistry, 2020, 85(19), 12304-12314.
15. Hiroya, K., et al., Simultaneous Functionalization and Cyclization of 2-Ethynylaniline Derivatives to Indoles. Heterocycles, 2017, 95(2), 920-933.
16. Cheng, G. and Hu, Y., Two efficient cascade reactions to synthesize substituted furocoumarins. The Journal of Organic Chemistry, 2008, 73(12), 4732-4735.
17. 蕭仁傑, 銅離子引發綠色螢光蛋白發光團類似物之環化反應:鄰位胺基上取代基的效應, 2023, 碩士論文, 國立成功大學化學系.
18. Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83(12), 2213-2228.