| 研究生: |
蔡宗璟 Tsai, Tsung-Ching |
|---|---|
| 論文名稱: |
整合分析胰臟癌中VAV1標的基因組 Integrative analysis of VAV1 target genes in pancreatic cancer |
| 指導教授: |
黃柏憲
Huang, Po-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 胰腺癌 、VAV1 、轉型生長因子β 、染色質免疫沈澱定序 、外泌體 |
| 外文關鍵詞: | PDAC, VAV1, TGF-β, ChIP-Seq, Exosome |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰腺癌(Pancreatic ductal adenocarcinoma, PDAC)於美國癌症死亡排行高居第三名,其五年存活率也僅只有8%。轉型生長因子β(Transforming growth factor beta, TGF-β)是一具多功能之細胞激素,其功能視細胞種類而異,包括抑制腫瘤訊號傳遞,反之也可以促進胰臟癌進程中的細胞間質化,部分是藉由調控異位表現的VAV1。根據過去的研究也指出過度表達的VAV1與胰腺癌病人的低存活率有關聯。雖然核內VAV1表現量高的病人中的相較於細胞質中VAV1表現較高的病人來說明顯有較好的整體存活率,但是細胞核中VAV1的調控功能依舊未知。對於致癌基因VAV1未知的機制和其對於基因組上的分布與結合情況,以及在胰腺癌癌化過程中其訊息RNA表現量失調的現象仍然尚未清楚。因此我們假設VAV1在胰腺癌進程中可能具有調控轉錄的功能。藉由VAV1染色質免疫沉澱定序(chromatin immunoprecipitation sequencing, ChIP-Seq)的分析來探討PANC-1細胞株在給予或不給予轉型生長因子β後VAV1基因組佔據的情形。進一步為了瞭解在給予TGF-β後VAV1調控的區域與基因表現的關聯性,我們藉由RNA高通量定序分析(RNA sequencing,RNA-Seq)的方式比較PANC-04.03細胞株在給予VAV1小分子干擾RNA與陰性控制小分子干擾RNA後轉錄體的表現情形。結果顯示經由VAV1小分子干擾後有2104個基因表現量上升,而有1915個基因表現量下降。最後將這些經由RNA高通量定序分析篩選出的基因與染色質免疫沉澱定序的資料組比對找出於胰腺癌中調控轉型生長因子β下游的潛在基因進行後續的功能分析。總結來說,核內VAV1的表現情形可用來釐清VAV1在胰腺癌上皮細胞間質化過程中調控的機制。另一方面,源自於胰臟癌母細胞的外泌體(Exosome)包裹著高完整度的RNA被分泌到生物體液中,具有潛力作為早期胰臟癌診斷的依據,因此我純化來自於胰臟癌病人的胰液和血清中的外泌體中RNA進行RNA高通量定序分析找出特異性的生物標記。
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States, and has a poor five-year overall survival rate of 8%. Transforming growth factor beta (TGF-β) is a multifunctional cytokine that operates context-dependently, either as a ligand for tumor suppressive signaling, or conversely as a trigger for mesenchymal differentiation of pancreatic cancer progression partly due to ectopic expression of VAV1. Previous research indicates that VAV1 over-expression is linked to poor survival in PDAC. Although the role of VAV1 in cell nucleus remains unclear, patients with nuclear VAV1 expression are associated with significantly better overall survival as compared to those with cytosolic VAV1. The underlying mechanisms of oncogenic VAV1 and its genome-wide occupancy, as well as the dysregulated messenger RNA expression in pancreatic carcinogenesis is not fully understood. Therefore, we hypothesized that VAV1 may have the potential to regulate transcription in PDAC progression. By conducting VAV1 chromatin immunoprecipitation sequencing (ChIP-Seq) analysis, we investigated the genome-wide binding patterns of VAV1 in PANC-1 cells with or without short-term TGF-β treatment. To correlate the effect of VAV1 binding and gene expression under TGF-β treatment, we compared the mRNA expression in PANC-04.03 cells that are transfected with VAV1 siRNA, as compared with control siRNA by RNA sequencing (RNA-Seq). Our result showed that 2104 upregulated and 1915 downregulated candidate genes were significantly altered in VAV1 siRNA transfected cells. Finally, a number of RNA-Seq candidates overlapped with the ChIP-Seq datasets with potential for TGF-β downstream effects in PDAC were selected for further functional investigation. In summary, nuclear VAV1 expression might functionally elucidate the mechanisms of VAV1 in mesenchymal differentiation of pancreatic cancer. On the other hand, since exosomes derived from the parental cells carry high integrity RNA and are released into bio-fluids in pancreatic carcinogenesis, RNA transcript packaging into exosome may be potential biomarkers in early pancreatic cancer diagnosis. Thus, I isolated the exosomes derived from both the pancreatic juice and the serum of pancreatic cancer patient followed by RNA-seq transcriptomic analysis to find out specific biomarker.
1. Rouanet M, Lebrin M, Gross F, Bournet B, Cordelier P, Buscail L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int J Mol Sci. 2017;18(6).
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913-21.
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.
4. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2(12):897-909.
5. Hruban RH, Iacobuzio-Donahue C, Wilentz RE, Goggins M, Kern SE. Molecular pathology of pancreatic cancer. Cancer J. 2001;7(4):251-8.
6. Jaffee EM, Hruban RH, Canto M, Kern SE. Focus on pancreas cancer. Cancer Cell. 2002;2(1):25-8.
7. Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol. 1999;19(11):7870-85.
8. Schuebel KE, Bustelo XR, Nielsen DA, Song BJ, Barbacid M, Goldman D, et al. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene. 1996;13(2):363-71.
9. Romero F, Fischer S. Structure and function of vav. Cell Signal. 1996;8(8):545-53.
10. Katzav S. Vav1: a hematopoietic signal transduction molecule involved in human malignancies. Int J Biochem Cell Biol. 2009;41(6):1245-8.
11. Tybulewicz VL. Vav-family proteins in T-cell signalling. Curr Opin Immunol. 2005;17(3):267-74.
12. Romero F, Dargemont C, Pozo F, Reeves WH, Camonis J, Gisselbrecht S, et al. p95vav associates with the nuclear protein Ku-70. Mol Cell Biol. 1996;16(1):37-44.
13. Romero F, Germani A, Puvion E, Camonis J, Varin-Blank N, Gisselbrecht S, et al. Vav binding to heterogeneous nuclear ribonucleoprotein (hnRNP) C. Evidence for Vav-hnRNP interactions in an RNA-dependent manner. J Biol Chem. 1998;273(10):5923-31.
14. Hobert O, Schilling JW, Beckerle MC, Ullrich A, Jallal B. SH3 domain-dependent interaction of the proto-oncogene product Vav with the focal contact protein zyxin. Oncogene. 1996;12(7):1577-81.
15. Hobert O, Jallal B, Ullrich A. Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression. Mol Cell Biol. 1996;16(6):3066-73.
16. Houlard M, Arudchandran R, Regnier-Ricard F, Germani A, Gisselbrecht S, Blank U, et al. Vav1 is a component of transcriptionally active complexes. J Exp Med. 2002;195(9):1115-27.
17. Schneider H, Rudd CE. CD28 and Grb-2, relative to Gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT/AP-1 transcription. Biochem Biophys Res Commun. 2008;369(2):616-21.
18. Piccolella E, Spadaro F, Ramoni C, Marinari B, Costanzo A, Levrero M, et al. Vav-1 and the IKK alpha subunit of I kappa B kinase functionally associate to induce NF-kappa B activation in response to CD28 engagement. J Immunol. 2003;170(6):2895-903.
19. Brugnoli F, Lambertini E, Varin-Blank N, Piva R, Marchisio M, Grassilli S, et al. Vav1 and PU.1 are recruited to the CD11b promoter in APL-derived promyelocytes: role of Vav1 in modulating PU.1-containing complexes during ATRA-induced differentiation. Exp Cell Res. 2010;316(1):38-47.
20. Zenker S, Panteleev-Ivlev J, Wirtz S, Kishimoto T, Waldner MJ, Ksionda O, et al. A key regulatory role for Vav1 in controlling lipopolysaccharide endotoxemia via macrophage-derived IL-6. J Immunol. 2014;192(6):2830-6.
21. Fernandez-Zapico ME. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell. 2005;7(1):39-49.
22. Huang PH, Lu PJ, Ding LY, Chu PC, Hsu WY, Chen CS, et al. TGFbeta promotes mesenchymal phenotype of pancreatic cancer cells, in part, through epigenetic activation of VAV1. Oncogene. 2017;36(16):2202-14.
23. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415-24.
24. Bierie B, Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev. 2006;17(1-2):29-40.
25. Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215-30.
26. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11(1-2):159-68.
27. Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1-2):41-58.
28. Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev. 1996;7(1):93-102.
29. Melzer C, Hass R, von der Ohe J, Lehnert H, Ungefroren H. The role of TGF-beta and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun Signal. 2017;15(1):19.
30. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616-30.
31. Kabashima A, Higuchi H, Takaishi H, Matsuzaki Y, Suzuki S, Izumiya M, et al. Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer. 2009;124(12):2771-9.
32. Salnikov AV, Liu L, Platen M, Gladkich J, Salnikova O, Ryschich E, et al. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential. PLoS One. 2012;7(9):e46391.
33. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548-58.
34. Medicherla S, Li L, Ma JY, Kapoun AM, Gaspar NJ, Liu YW, et al. Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Res. 2007;27(6B):4149-57.
35. Ostapoff KT, Cenik BK, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGFbetaR2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74(18):4996-5007.
36. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116-25.
37. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75-87.
38. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633-7.
39. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431-7.
40. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470-6.
41. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569-79.
42. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:287-303.
43. Hornstein I, Pikarsky E, Groysman M, Amir G, Peylan-Ramu N, Katzav S. The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. J Pathol. 2003;199(4):526-33.
44. Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. J Pathol. 2009;219(1):25-34.
45. Yin J, Wan YJ, Li SY, Du MJ, Zhang CZ, Zhou XL, et al. The distinct role of guanine nucleotide exchange factor Vav1 in Bcl-2 transcription and apoptosis inhibition in Jurkat leukemia T cells. Acta Pharmacol Sin. 2011;32(1):99-107.
校內:2023-02-01公開