| 研究生: |
劉一志 Liu, Yi-Chih |
|---|---|
| 論文名稱: |
利用能譜技術研究掃描探針場致矽鍺奈米結構 Studying the scanning probe anodic oxidation induced SiGe nanostructures by using spectroscopic technologies |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 局域性陽極氧化 、矽鍺薄膜 、原子力顯微鏡 、拉曼光譜 、光電子能譜 |
| 外文關鍵詞: | Local Anodic Oxidation, SiGe thin film, AFM, Raman, SPEM |
| 相關次數: | 點閱:55 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要的目的是想利用原子力顯微鏡的局域性陽極氧化技術和矽鍺薄膜選擇性氧化的特性對矽鍺薄膜進行氧化最後產生鍺量子點,並利用掃描式光電子能譜和拉曼光譜探討矽鍺薄膜氧化前後能譜的變化。
從掃描式光電子能譜分析結果發現矽鍺薄膜經局域性氧化後的區域,此區域量測到的價帶最大值比起未氧化的區域還來得大,這可能是因為氧化後產生的鍺量子點受到量子侷限效應的影響使能隙變大所導致的,而從拉曼光譜的結果可以發現氧化後光譜有兩個明顯的趨勢,一個是矽的訊號有紅移的現象,這是因為氧化後矽和鍺比例的變化使薄膜應力改變最後導致紅移,另一個是鍺的訊號有半高寬變寬且波形不對襯的現象,這可能是因為氧化後的產生的鍺量子點受到聲子侷限效應影響所導致的。
由我們的實驗結果可以看出經局域性陽極氧化後的矽鍺薄膜的區域所得到能譜和理論上量子點的能譜是相符合的,所以利用原子力顯微鏡的局域性陽極氧化技術對矽鍺薄膜進行氧化是有可能產生鍺量子點。
The main purpose of this experiment is to use the local anodic oxidation technique of atomic force microscopy to oxidize the Silicon Germanium thin film to make Germanium nanoclusters, and to use the scanning photoelectron spectroscopy and Raman spectroscopy to study the change of spectrum before and after oxidation of Silicon Germanium thin film. Based on the scanning photoelectron spectroscopy results, it is found that the valence band maximum value in the oxidized region is larger than that in the unoxidized region. Because the nanoclusters may be generated after oxidation, the quantum confinement effect is caused by the change of the energy band. Finally, Based on the Raman spectroscopy results, it is found that the Raman peak is widened and asymmetrical. This phenomenon was attributed to phonon confinement effect in the Germanium nanoclusters.
[1] Verdonckt-Vandebroek, Sophie, et al. "SiGe-channel heterojunction p-MOSFET's." IEEE Transactions on Electron Devices 41.1 (1994): 90-101.
[2] Richardson, Christopher JK, and Minjoo Larry Lee. "Metamorphic epitaxial materials." MRS Bulletin 41.3 (2016): 193-198.
[3] Olsen, Sarah H., et al. "Optimization of alloy composition for high-performance strained-Si-SiGeN-channel MOSFETs." IEEE Transactions on Electron Devices 51.7 (2004): 1156-1163.
[4] Chien, C. Y., et al. "Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit." Nanoscale 6.10 (2014): 5303-5308.
[5] Kuo, Ming-Hao, et al. "High photoresponsivity Ge-dot photoMOSFETs for low-power monolithically-integrated Si optical interconnects." Scientific reports 7 (2017): 44402.
[6] Li, P. W., et al. "Study of tunneling currents through germanium quantum-dot single-hole and-electron transistors." Applied physics letters 88.21 (2006): 213117.
[7] Hossain, Mohammed Eshphaq, et al. Quantum dot lasers. Diss. Department of Electrical and Electronic Engineering, Islamic University of Technology, 2017.
[8] Michel, Jurgen, Jifeng Liu, and Lionel C. Kimerling. "High-performance Ge-on-Si photodetectors." Nature photonics 4.8 (2010): 527.
[9] Zinovyev, V. A., et al. "Strain-induced improvement of photoluminescence from the groups of laterally ordered SiGe quantum dots." Applied Physics Letters 110.10 (2017): 102101.
[10] Lavchiev, Ventsislav, et al. "Si rib waveguide photodetector with an ordered array of Ge islands for 1.5 μm." Optics letters 34.24 (2009): 3785-3787.
[11] Liao, Po-Hsiang, et al. "Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4." Applied Physics Letters 105.17 (2014): 172106.
[12] Rappich, J., I. Sieber, and R. Knippelmeyer. "Enhanced passivation of the oxide/SiGe interface of SiGe epitaxial layers on Si by anodic oxidation." Electrochemical and Solid-State Letters 4.3 (2001): B11-B13.
[13] Garcı́a, Ricardo, Montserrat Calleja, and Heinrich Rohrer. "Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges." Journal of Applied Physics 86.4 (1999): 1898-1903.
[14]林聖富,國立成功大學物理所碩士畢業論文(2018).
[15] Garcia, Ricardo, Ramses V. Martinez, and Javier Martinez. "Nano-chemistry and scanning probe nanolithographies." Chemical Society Reviews 35.1 (2006): 29-38.
[16] Shan, Yuping, and Hongda Wang. "The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy." Chemical Society Reviews 44.11 (2015): 3617-3638.
[17] Kontomaris, S. V., and A. Stylianou. "Atomic force microscopy for university students: Applications in biomaterials." European Journal of Physics 38.3 (2017): 033003
[18] Kudryavtsev, Andrey. 3D Reconstruction in Scanning Electron Microscope: from image acquisition to dense point cloud. Diss. Bourgogne Franche-Comté, 2017.
[19] Downes, Andrew, and Alistair Elfick. "Raman spectroscopy and related techniques in biomedicine." Sensors 10.3 (2010): 1871-1889.
[20] Nataf, Guillaume F. New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy. Diss. Paris Saclay, 2016.
[21] 同步加速器光源簡介(https://www.nsrrc.org.tw/chinese/lightsource.aspx)
[22] Hong, I-H., et al. "Performance of the SRRC scanning photoelectron mic-roscope." Nuclear Instruments and Methods in Physics Research Section A: Acc- elerators, Spectrometers, Detectors and Associated Equipment 467 (2001): 905-908.
[23]從光電效應到光電子顯微術 陳家浩 物理雙月刊 二十七卷5期 2005.10
[24] Ryu, Yu K., and Ricardo Garcia. "Advanced oxidation scanning probe lithography." Nanotechnology 28.14 (2017): 142003.
[25] Prieto, A. C., et al. "UV Raman spectroscopy of group IV nanocrystals embedded in a SiO 2 matrix." Journal of Materials Science: Materials in Electronics 19.2 (2008): 155-159.
[26] Yvon, H. Jobin. "Strain measurements of a Si cap layer deposited on a SiGe substrate determination of Ge content." (2013).
[27] Perova, T. S., et al. "Composition and strain in thin Si 1− x Ge x virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction." Journal of Applied Physics 109.3 (2011): 033502.
[28] Wellner, A., et al. "Stress measurements of germanium nanocrystals embedded in silicon oxide." Journal of applied physics 94.9 (2003): 5639-5642.
[29] Campbell, I. H., and Ph M. Fauchet. "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors." Solid State Communications 58.10 (1986): 739-741.
[30] Konchenko, Alexander, et al. "Quantum confinement observed in Ge nanodots on an oxidized Si surface." Physical Review B 73.11 (2006): 113311.
[31] Srikar, V. T., and S. Mark Spearing. "A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems." Experimental mechanics 43.3 (2003): 238-247.
[32] Geppert, Linda. "The amazing vanishing transistor act." IEEE spectrum 39.10 (2002): 28-33.