簡易檢索 / 詳目顯示

研究生: 陳彥瑋
Chen, Yan-Wei
論文名稱: 探討鋅手指樣蛋白與錨蛋白重複結構40在癌症抑制中所扮演的角色
Investigating the role of Zfra and ANR40 in cancer suppression
指導教授: 張南山
Chang, Nan-Shan
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: Z細胞鋅手指樣蛋白錨蛋白重複結構40雙色胺酸功能區氧化還原酶雌激素受體蛋白激酶B絲裂原活化蛋白激酶
外文關鍵詞: Z cell, Zfra, ANR40, WWOX, ER, AKT, MAPK
相關次數: 點閱:127下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋅手指樣蛋白 (Zinc finger-like protein that regulates apoptosis, Zfra)是一個僅含31個胺基酸的小型蛋白質。在先前的研究中已經證實Zfra能夠預防癌細胞的生長,預先於小鼠尾靜脈注射全長的Zfra1-31或截斷型Zfra4-10將會活化小鼠脾臟內一種特殊的免疫細胞¬¬-Hyal-2+ CD3- CD19- Z細胞。當Z細胞活化後將能夠預防癌細胞的生長,但在先前的研究中顯示,Zfra對於癌症的治療效果並不理想,推測與Zfra的溶劑有著密切的關係。在這份研究中,我們發現當Zfra (4-10)溶於二甲基亞碸 (Dimethyl sulfoxide, DMSO)能夠有效的治療癌症。在已生長腫瘤的BALB/c小鼠以及NOD-SCID小鼠身上以尾靜脈注射Zfra4-10後,腫瘤的生長相對於控制組受到明顯的抑制,並且Zfra的抑癌效果與市面上現行之抗癌藥物Ceritinib以及Docetaxel並沒有產生顯著差異。同時,癌細胞的肺轉移也明顯的受到抑制。另外,我們發現帶有Zfra基因的質體DNA同樣具有抑癌效果,注射了帶有Zfra cDNA的質體後,小鼠身上的4T1與B16F10癌細胞生長明顯受到抑制。我們推測,Zfra除了能活化Z細胞引起抗癌免疫反應之外,癌細胞可能吸收了Zfra基因並因過度表現Zfra而死亡。ANR40與Zfra同屬於會和抗癌蛋白WWOX結合的蛋白質。在類似的動物實驗中,我們也發現過度表現ANR40基因與Wwox基因能抑制癌細胞的生長。藉由免疫共沉澱與以及螢光共振能量轉移實驗我們驗證了Zfra會與ANR40直接結合。同時過度表現ANR40以及Zfra能使B16F10黑色素瘤細胞在細胞週期中的G2/M期被遏止,G2/M期的比例從20.3%提升至37.6%。ER促進劑能抑制ANR40以及Zfra所引起的G2/M期上升,並且我們透過免疫共沉澱也證實ANR40與pERβ能形成複合物。過度表現Zfra與 ANR40抑制了ERβ下游的AKT及MAPK訊息傳遞。此外,過度表現ANR40以及Zfra會降低黑色素瘤癌症幹細胞標記CD133的表現與B16F10的致瘤性。Zfra能活化ANR40的作用去抑制癌細胞生長。總而言之,我們的數據顯示ANR40與Zfra能共同抑制黑色素瘤的生長。

    Zfra (Zinc finger-like protein that regulates apoptosis) is a 31-amino-acid zinc finger-like protein which prevents many types of cancer growth in mice. Post tail vein injection, full length Zfra1-31 or truncated Zfra4-10 peptide is deposited mainly in mouse spleen. Zfra activates novel type of splenocytes which are identified to be Hyal-2+ CD3- CD19- Z cells. Despite its role in cancer suppression, Zfra antitumor function has not been maximized. Phosphate-buffered saline induces time-related overpolymerization of Zfra and leads to its functional inactivation. Here, Zfra, dissolved in dimethyl sulfoxide (DMSO) effectively blocks the growth of breast 4T1 cancer cells and B16F10 melanoma cells in BALB/c mice and NOD-SCID mice, which are comparable to those effects of anticancer drugs ceritinib and docetaxel. In parallel, injected Zfra cDNA in mammalian expression vector exhibited similar results in vivo. Both Zfra and ankyrin repeat domain 40 (ANKRD40 or designated as ANR40) are binding proteins of tumor suppressor WW Domain-Containing Oxidoreductase (WWOX). Transiently overexpressed ANR40 effectively suppressed B16F10 cells growth in vivo and in vitro. ANR40 physically interacts with Zfra, as determined by co-immunoprecipitation and Förster resonance energy transfer. Ectopic expression of ANR40 and Zfra arrests cell cycle progression at the G2/M phase. Estrogen receptor β agonist ERB-041 blocked the G2/M arrest. The ANR40/ER complex was verified by immunoprecipitation, suggesting that ANR40 directly inhibited ER. The ANR40/ER complex was dissociated by 17beta-Estradiol. Zfra may covalently conjugate with proteins. Ectopic expression of ANR40 and Zfra reduced the underlying pro-survival AKT and MAPK pathway. In addition, ectopic expression of ANR40 and Zfra reduced transforming growth of B16F10, as well as its stem cell marker CD133. After binding with Zfra, ANR40 becomes active to suppress cancer growth. Together, our data suggest that ANR40 and Zfra synergistically act in melanoma suppression in vivo.

    Table of contents 中文摘要 I Abstract II 誌謝 III Table of contents IV Index of Figures VI Abbreviation VII Introduction 1 Goals of this Study 1 Tumor Suppressor WW Domain-Containing Oxidoreductase, WWOX 1 Zinc Finger-like Protein that Regulates Apoptosis, Zfra 8 Ankyrin Repeat Domain 40, ANRD40 12 Materials and methods 13 Cell lines 13 cDNA constructs and transient Gene expression 13 Preparation of Zfra Peptides and Antibodies 14 Cell cycle analysis 14 Co-immunoprecipitation, western blot 14 FRETc 15 Soft Agar colony formation assay 16 MTT assay 16 Animal husbandry and tumor xenografts 16 Statistical Analysis 17 Results 18 DMSO enhances anticancer activity of Zfra 18 Alteration of Ser 6 Blocks Tumor Suppression 18 Zfra Exhibits Antitumor Function in Immunodeficient Mice 19 Comparison of Zfra and Listed Anticancer Drugs 19 Zfra cDNA Blocks 4T1 Breast Cancer Cell Growth 20 Tumor Suppression of Zfra cDNA is Performed in Immunodeficient Mice as Well 20 ANR40, Zfra or WWOX Directly Diminish Tumorigenicity 21 ANR40 and Zfra Regulates AKT Pathway and MAPK Pathway 22 The overexpressed ANR40 directly interacted with Zfra in one day 22 ANR40 and Zfra Regulates Cell Cycle Progression 23 Ectopic Expressed Zfra and ANR40 Induces G2/M Arrest in a p53-Independent Regulation 23 Conclusion 26 Discussion 27 Zfra in cancer treatment 27 Function of ANR40 and Zfra in vitro 28 Reference 31 Figures 42

    Reference

    1. Hsu, L.-J., Schultz, L., Mattison, J., Lin, Y.-S., and Chang, N.-S. (2005) Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochem. Biophys. Res. Commun. 327, 415-423
    2. Hsu, L.-J., Hong, Q., Schultz, L., Kuo, E., Lin, S.-R., Lee, M.-H., Lin, Y.-S., and Chang, N.-S. (2008) Zfra is an inhibitor of Bcl-2 expression and cytochrome c release from the mitochondria. Cell. Signal. 20, 1303-1312
    3. Lee, M.-H., Shih, Y.-H., Lin, S.-R., Chang, J.-Y., Lin, Y.-H., Sze, C.-I., Kuo, Y.-M., and Chang, N.-S. (2017) Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. Alzheimers Dement (N Y) 3, 189-204
    4. Lee, M. H., Su, W. P., Wang, W. J., Lin, S. R., Lu, C. Y., Chen, Y. A., Chang, J. Y., Huang, S. S., Chou, P. Y., Ye, S. R., Chen, S. J., He, H., Liu, T. H., Chou, Y. T., Hsu, L. J., Lai, F. J., Chen, S. J., Lee, H. C., Kakhniashvili, D., Goodman, S. R., and Chang, N. S. (2015) Zfra activates memory Hyal-2+ CD3- CD19- spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget 6, 3737-3751
    5. Chang, N.-S., Hsu, L.-J., Lin, Y.-S., Lai, F.-J., and Sheu, H.-M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12-22
    6. Aqeilan, R. I., Trapasso, F., Hussain, S., Costinean, S., Marshall, D., Pekarsky, Y., Hagan, J. P., Zanesi, N., Kaou, M., and Stein, G. S. (2007) Targeted deletion of Wwox reveals a tumor suppressor function. Proc.Natl.Acad.Sci.U.S.A. 104, 3949-3954
    7. Chang, N.-S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361-3370
    8. Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140-2145
    9. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., Venter, D., Baker, E., and Richards, R. I. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663
    10. Chang, N. S. (2002) A potential role of p53 and WOX1 in mitochondrial apoptosis (review). Int. J. Mol. Med. 9, 19-24
    11. Chang, N.-S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S.-T., and Oppermann, U. (2003) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem. Pharmacol. 66, 1347-1354
    12. Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., and Sze, C. I. (2005) 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24, 714-723
    13. Su, W.-P., Chen, S.-H., Chen, S.-J., Chou, P.-Y., Huang, C.-C., and Chang, N.-S. (2012) WW Domain-containing oxidoreductase is a potential receptor for sex steroid hormones. in Sex Hormones, InTech. pp
    14. Huang, S.-S., Su, W.-P., Lin, H.-P., Kuo, H.-L., Wei, H.-L., and Chang, N.-S. (2016) Role of WW domain-containing oxidoreductase WWOX in driving T cell acute lymphoblastic leukemia maturation. J. Biol. Chem. 291, 17319-17331
    15. Iwata, M., Kuwata, T., Mukai, M., Tozawa, Y., and Yokoyama, M. (1996) Differential induction of helper and killer T cells from isolated CD4+ CD8+ thymocytes in suspension culture. Eur. J. Immunol. 26, 2081-2086
    16. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S.-Y., Melino, G., and Huebner, K. (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc. Natl. Acad. Sci. U. S. A. 101, 4401-4406
    17. Chen, S. J., Lin, P. W., Lin, H. P., Huang, S. S., Lai, F. J., Sheu, H. M., Hsu, L. J., and Chang, N. S. (2015) UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 6, 8007-8018
    18. Chang, N. S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol. Chem. 278, 9195-9202
    19. Chang, N. S., Doherty, J., Ensign, A., Schultz, L., Hsu, L. J., and Hong, Q. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J. Biol. Chem. 280, 43100-43108
    20. Mahajan, N. P., Whang, Y. E., Mohler, J. L., and Earp, H. S. (2005) Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 65, 10514-10523
    21. Zhang, S., He, H., Day, A. J., and Tseng, S. C. (2012) Constitutive expression of inter-α-inhibitor (IαI) family proteins and tumor necrosis factor-stimulated gene-6 (TSG-6) by human amniotic membrane epithelial and stromal cells supporting formation of the heavy chain-hyaluronan (HC-HA) complex. J. Biol. Chem. 287, 12433-12444
    22. Chen, S.-T., Chuang, J., Wang, J., Tsai, M., Li, H., and Chang, N.-S. (2004) Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124, 831-839
    23. Nunez, M. I., Ludes-Meyers, J., and Aldaz, C. M. (2006) WWOX protein expression in normal human tissues. J. Mol. Histol. 37, 115-125
    24. Watanabe, A., Hippo, Y., Taniguchi, H., Iwanari, H., Yashiro, M., Hirakawa, K., Kodama, T., and Aburatani, H. (2003) An opposing view on WWOX protein function as a tumor suppressor. Cancer Res. 63, 8629-8633
    25. Chen, H. I., and Sudol, M. (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc.Natl.Acad.Sci.U.S.A. 92, 7819-7823
    26. Chan, D. C., Bedford, M. T., and Leder, P. (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045
    27. Bedford, M. T., Reed, R., and Leder, P. (1998) WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proc.Natl.Acad.Sci.U.S.A. 95, 10602-10607
    28. Lu, P.-J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999) Function of WW domains as phosphoserine-or phosphothreonine-binding modules. Science 283, 1325-1328
    29. Aqeilan, R. I., Palamarchuk, A., Weigel, R. J., Herrero, J. J., Pekarsky, Y., and Croce, C. M. (2004) Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2γ transcription factor. Cancer Res. 64, 8256-8261
    30. Hong, Q., Hsu, L.-J., Schultz, L., Pratt, N., Mattison, J., and Chang, N.-S. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response. BMC Mol. Biol. 8, 50
    31. Hsu, L.-J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M.-Y., Lai, F.-J., Lin, S.-R., Lee, M.-H., and Lo, C.-P. (2009) Transforming growth factor β1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol. Chem. 284, 16049-16059
    32. McDonald, C. B., Buffa, L., Bar-Mag, T., Salah, Z., Bhat, V., Mikles, D. C., Deegan, B. J., Seldeen, K. L., Malhotra, A., and Sudol, M. (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J. Mol. Biol. 422, 58-74
    33. Lai, F.-J., Cheng, C.-L., Chen, S.-T., Wu, C.-H., Hsu, L.-J., Lee, J. Y.-Y., Chao, S.-C., Sheen, M.-C., Shen, C.-L., and Chang, N.-S. (2005) WOX1 Is Essential for UVB Irradiation–Induced Apoptosis and Down-Regulated via Translational Blockade in UVB-Induced Cutaneous Squamous Cell Carcinoma In vivo. Clin. Cancer Res. 11, 5769-5777
    34. Nan-Shan, C. (1997) Hyaluronidase enhancement of TNF-mediated cell death is reversed by TGF-b. Am. J. Physiol. 273, 1987-1994
    35. Chang, N.-S. (2002) Transforming growth factor-β1 blocks the enhancement of tumor necrosis factor cytotoxicity by hyaluronidase Hyal-2 in L929 fibroblasts. BMC Cell Biol. 3, 8
    36. Hsu, L.-J., Hong, Q., Chen, S.-T., Kuo, H.-L., Schultz, L., Heath, J., Lin, S.-R., Lee, M.-H., Li, D.-Z., and Li, Z.-L. (2017) Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 8, 19137
    37. Lin, H.-P., Chang, J.-Y., Lin, S.-R., Lee, M.-H., Huang, S.-S., Hsu, L.-J., and Chang, N.-S. (2011) Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer 2, 550-562
    38. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., and Venter, D. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663
    39. Bleau, A. M., Freire, J., Pajares, M. J., Zudaire, I., Anton, I., Nistal‐Villán, E., Redrado, M., Garmendia, I., Ajona, D., and Blanco, D. (2014) New syngeneic inflammatory‐related lung cancer metastatic model harboring double KRAS/WWOX alterations. Int. J. Cancer 135
    40. Driouch, K., Prydz, H., Monese, R., Johansen, H., Lidereau, R., and Frengen, E. (2002) Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21, 1832-1840
    41. Gao, G., and Smith, D. I. (2014) Very large common fragile site genes and their potential role in cancer development. Cell. Mol. Life Sci. 71, 4601-4615
    42. Abu-Odeh, M., Salah, Z., Herbel, C., Hofmann, T. G., and Aqeilan, R. I. (2014) WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response. Proc. Natl. Acad. Sci. U. S. A. 111, E4716-4725
    43. Abu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., Kim, P. M., and Aqeilan, R. I. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J. Biol. Chem. 289, 8865-8880
    44. Lee, J. H., and Paull, T. T. (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741-7748
    45. Schrock, M. S., Batar, B., Lee, J., Druck, T., Ferguson, B., Cho, J. H., Akakpo, K., Hagrass, H., Heerema, N. A., Xia, F., Parvin, J. D., Aldaz, C. M., and Huebner, K. (2017) Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 36, 2215-2227
    46. Salah, Z., Aqeilan, R., and Huebner, K. (2010) WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol. 6, 249-259
    47. Aldaz, C. M., Ferguson, B. W., and Abba, M. C. (2014) WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim. Biophys. Acta 1846, 188-200
    48. Driouch, K., Prydz, H., Monese, R., Johansen, H., Lidereau, R., and Frengen, E. (2002) Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21, 1832-1840
    49. Yendamuri, S., Kuroki, T., Trapasso, F., Henry, A. C., Dumon, K. R., Huebner, K., Williams, N. N., Kaiser, L. R., and Croce, C. M. (2003) WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res. 63, 878-881
    50. Ishii, H., Vecchione, A., Furukawa, Y., Sutheesophon, K., Han, S. Y., Druck, T., Kuroki, T., Trapasso, F., Nishimura, M., Saito, Y., Ozawa, K., Croce, C. M., Huebner, K., and Furukawa, Y. (2003) Expression of FRA16D/WWOX and FRA3B/FHIT genes in hematopoietic malignancies. Mol. Cancer Res. 1, 940-947
    51. Bouteille, N., Driouch, K., Hage, P. E., Sin, S., Formstecher, E., Camonis, J., Lidereau, R., and Lallemand, F. (2009) Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28, 2569-2580
    52. Gourley, C., Paige, A. J., Taylor, K. J., Scott, D., Francis, N. J., Rush, R., Aldaz, C. M., Smyth, J. F., and Gabra, H. (2005) WWOX mRNA expression profile in epithelial ovarian cancer supports the role of WWOX variant 1 as a tumour suppressor, although the role of variant 4 remains unclear. Int. J. Oncol. 26, 1681-1689
    53. Gothlin Eremo, A., Wegman, P., Stal, O., Nordenskjold, B., Fornander, T., and Wingren, S. (2013) Wwox expression may predict benefit from adjuvant tamoxifen in randomized breast cancer patients. Oncol. Rep. 29, 1467-1474
    54. Ge, F., Chen, W., Yang, R., Zhou, Z., Chang, N., Chen, C., Zou, T., Liu, R., Tan, J., and Ren, G. (2014) WWOX suppresses KLF5 expression and breast cancer cell growth. Chin. J. Cancer Res. 26, 511-516
    55. Nunez, M. I., Ludes-Meyers, J., Abba, M. C., Kil, H., Abbey, N. W., Page, R. E., Sahin, A., Klein-Szanto, A. J., and Aldaz, C. M. (2005) Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status. Breast Cancer Res. Treat. 89, 99-105
    56. Huang, D., Qiu, F., Yang, L., Li, Y., Cheng, M., Wang, H., Ma, G., Wang, Y., Hu, M., and Ji, W. (2013) The polymorphisms and haplotypes of WWOX gene are associated with the risk of lung cancer in southern and eastern Chinese populations. Mol. Carcinog. 52, 19-27
    57. Becker, S., Markova, B., Wiewrodt, R., Hoffarth, S., Hähnel, P. S., Pleiner, S., Schmidt, L. H., Breitenbuecher, F., and Schuler, M. (2011) Functional and clinical characterization of the putative tumor suppressor WWOX in non-small cell lung cancer. J. Thorac. Oncol. 6, 1976-1983
    58. Zhang, P., Ying, L., Xu, R., Ge, S., Mei, W., Li, F., Dai, B., Lu, J., and Qian, G. (2009) Tumor-specific, hypoxia-regulated, WW domain-containing oxidoreductase-expressing adenovirus inhibits human non-small cell lung cancer growth in vivo. Hum. Gene Ther. 21, 27-39
    59. Fabbri, M., Iliopoulos, D., Trapasso, F., Aqeilan, R. I., Cimmino, A., Zanesi, N., Yendamuri, S., Han, S.-Y., Amadori, D., and Huebner, K. (2005) WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc.Natl.Acad.Sci.U.S.A. 102, 15611-15616
    60. Quail, D. F., and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437
    61. Karin, M. (2009) NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141
    62. Zhang, Z., and Rigas, B. (2006) NF-κB, inflammation and pancreatic carcinogenesis: NF-κB as a chemoprevention target. Int. J. Oncol. 29, 185-192
    63. Chen, S.-J., Huang, S.-S., and Chang, N.-S. (2013) Role of WWOX and NF-κB in lung cancer progression. Transl. Respir. Med. 1, 15
    64. Tabarki, B., Al Mutairi, F., and Al Hashem, A. (2015) The fragile site WWOX gene and the developing brain. Exp. Biol. Med. 240, 400-402
    65. Suzuki, H., Katayama, K., Takenaka, M., Amakasu, K., Saito, K., and Suzuki, K. (2009) A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes, Brain and Behav. 8, 650-660
    66. Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., and Niewiadomska, G. (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci. 15, 4671-4713
    67. Sze, C.-I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L.-J., Heath, J., Schultz, L., and Chang, N.-S. (2004) Down-regulation of WW Domain-containing Oxidoreductase Induces Tau Phosphorylation in Vitro A POTENTIAL ROLE IN ALZHEIMER'S DISEASE. J. Biol. Chem. 279, 30498-30506
    68. Wang, H.-Y., Juo, L.-I., Lin, Y., Hsiao, M., Lin, J., Tsai, C., Tzeng, Y., Chuang, Y., Chang, N., and Yang, C. (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3β. Cell Death Differ. 19, 1049-1059
    69. Chang, N.-S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol. Chem. 278, 9195-9202
    70. Chang, J.-Y., Chiang, M.-F., Lin, S.-R., Lee, M.-H., He, H., Chou, P.-Y., Chen, S.-J., Chen, Y.-A., Yang, L.-Y., and Lai, F.-J. (2012) TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis. 3, e302
    71. Lee, M., Lin, S., Chang, J., Schultz, L., Heath, J., Hsu, L., Kuo, Y., Hong, Q., Chiang, M., and Gong, C. (2010) TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease. Cell Death Dis. 1, e110
    72. Chang, J.-Y., Lee, M.-H., Lin, S.-R., Yang, L.-Y., Sun, H. S., Sze, C.-I., Hong, Q., Lin, Y.-S., Chou, Y.-T., and Hsu, L.-J. (2015) Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget 6, 3578
    73. Chang, H.-T., Liu, C.-C., Chen, S.-T., Yap, Y. V., Chang, N.-S., and Sze, C.-I. (2014) WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget 5, 11792
    74. Chang, N.-S. (2015) Introduction to a thematic issue for WWOX. Exp. Biol. Med. 240, 281-284
    75. Lo, C. P., Hsu, L. J., Li, M. Y., Hsu, S. Y., Chuang, J. I., Tsai, M. S., Lin, S. R., Chang, N. S., and Chen, S. T. (2008) MPP+‐induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain‐containing oxidoreductase WOX1. Eur. J. Neurosci. 27, 1634-1646
    76. Blanco, G., Irving, N. G., Brown, S. D., Miller, C. C., and McLoughlin, D. M. (1998) Mapping of the human and murine X11-like genes (APBA2 and apba2), the murine Fe65 gene (Apbb1), and the human Fe65-like gene (APBB2): genes encoding phosphotyrosine-binding domain proteins that interact with the Alzheimer's disease amyloid precursor protein. Mamm. Genome 9, 473-475
    77. Dudekula, S., Lee, M.-H., Hsu, L.-J., Chen, S.-J., and Chang, N.-S. (2010) Zfra is a small wizard in the mitochondrial apoptosis. Aging (Albany NY) 2, 1023
    78. Su, W.-P., Wang, W.-J., Sze, C.-I., and Chang, N.-S. (2016) Zfra induction of memory anticancer response via a novel immune cell. Oncoimmunology 5, e1213935
    79. Majd, S., Power, J. H., and Grantham, H. J. (2015) Neuronal response in Alzheimer’s and Parkinson’s disease: the effect of toxic proteins on intracellular pathways. BMC Neurosci. 16, 69
    80. Chen, J., Zhou, Y., Mueller-Steiner, S., Chen, L.-F., Kwon, H., Yi, S., Mucke, L., and Gan, L. (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem. 280, 40364-40374
    81. Grilli, M., Goffi, F., Memo, M., and Spano, P. (1996) Interleukin-1β and glutamate activate the NF-κB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J. Biol. Chem. 271, 15002-15007
    82. Mosavi, L. K., Minor, D. L., and Peng, Z.-y. (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc.Natl.Acad.Sci.U.S.A. 99, 16029-16034
    83. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C., and Peng, Z. y. (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435-1448
    84. Bork, P. (1993) Hundreds of ankyrin‐like repeats in functionally diverse proteins: Mobile modules that cross phyla horizontally? Proteins: Struct. Funct. Bioinform. 17, 363-374
    85. Kandel, E. S., Skeen, J., Majewski, N., Di Cristofano, A., Pandolfi, P. P., Feliciano, C. S., Gartel, A., and Hay, N. (2002) Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Mol. Cell. Biol. 22, 7831-7841
    86. Ding, Q., Miyazaki, Y., Tsukasa, K., Matsubara, S., Yoshimitsu, M., and Takao, S. (2014) CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol. Cancer 13, 15
    87. Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., Xu, W., Cui, C., Xing, Y., and Liu, Y. (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc.Natl.Acad.Sci.U.S.A. 110, 6829-6834
    88. Xia, P., and Xu, X.-Y. (2015) PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am. J. Cancer Res. 5, 1602
    89. Wang, Y., Zhu, Y., Qiu, F., Zhang, T., Chen, Z., Zheng, S., and Huang, J. (2010) Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis 31, 1376-1380
    90. Zhu, Y., Yu, J., Wang, S., Lu, R., Wu, J., and Jiang, B. (2014) Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells. Oncol. Rep. 32, 2437-2444
    91. Ohm, J. E., and Carbone, D. P. (2002) Immune dysfunction in cancer patients. Oncology (Williston Park, NY) 16, 11-18
    92. Swann, J. B., and Smyth, M. J. (2007) Immune surveillance of tumors. J. Clin. Invest. 117, 1137
    93. Santegoets, S. J., Welters, M. J., and van der Burg, S. H. (2016) Monitoring of the immune dysfunction in cancer patients. Vaccines 4, 29
    94. Dolgova, E. V., Potter, E. A., Proskurina, A. S., Minkevich, A. M., Chernych, E. R., Ostanin, A. A., Efremov, Y. R., Bayborodin, S. I., Nikolin, V. P., and Popova, N. A. (2016) Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line. Stem Cell. Res. Ther. 7, 76
    95. Lim, K. J., Sung, B. H., Shin, J. R., Lee, Y. W., Yang, K. S., and Kim, S. C. (2013) A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One 8, e66084
    96. Regberg, J., Srimanee, A., and Langel, Ü. (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals 5, 991-1007
    97. Marqus, S., Pirogova, E., and Piva, T. J. (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 24, 21
    98. Ishiguro, T., Ohata, H., Sato, A., Yamawaki, K., Enomoto, T., and Okamoto, K. (2017) Tumor‐derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci.
    99. Mori, S., Chang, J. T., Andrechek, E. R., Matsumura, N., Baba, T., Yao, G., Kim, J. W., Gatza, M., Murphy, S., and Nevins, J. R. (2009) Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28, 2796-2805
    100. Takahashi, M., Furihata, M., Akimitsu, N., Watanabe, M., Kaul, S., Yumoto, N., and Okada, T. (2008) A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin. Exp. Metastasis 25, 517-529
    101. Moréno, S. G., Dutrillaux, B., and Coffigny, H. (2001) Status of p53, p21, mdm2, pRb proteins, and DNA methylation in gonocytes of control and γ-irradiated rats during testicular development. Biol. Reprod. 64, 1422-1431
    102. Wang, M., Wang, Y., Weil, B., Abarbanell, A., Herrmann, J., Tan, J., Kelly, M., and Meldrum, D. R. (2009) Estrogen receptor β mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R972-R978
    103. Zhang, L., Blackman, B. E., Schonemann, M. D., Zogovic-Kapsalis, T., Pan, X., Tagliaferri, M., Harris, H. A., Cohen, I., Pera, R. A. R., and Mellon, S. H. (2010) Estrogen receptor β-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons. PLoS One 5, e11791
    104. Sotiriou , C., and Pusztai , L. (2009) Gene-Expression Signatures in Breast Cancer. N. Engl. J. Med. 360, 790-800
    105. Cavalieri, E., Chakravarti, D., Guttenplan, J., Hart, E., Ingle, J., Jankowiak, R., Muti, P., Rogan, E., Russo, J., Santen, R., and Sutter, T. (2006) Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta 1766, 63-78
    106. Pritchard, K. I. (2009) Ovarian suppression/ablation in premenopausal ER-positive breast cancer patients. Issues and recommendations. Oncology (Williston Park) 23, 27-33
    107. Hsu, L. J., Hong, Q., Chen, S. T., Kuo, H. L., Schultz, L., Heath, J., Lin, S. R., Lee, M. H., Li, D. Z., Li, Z. L., Cheng, H. C., Armand, G., and Chang, N. S. (2017) Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 8, 19137-19155
    108. Holland, M. J., Palmarini, M., Garcia-Goti, M., Gonzalez, L., McKendrick, I., de las Heras, M., and Sharp, J. M. (1999) Jaagsiekte retrovirus is widely distributed both in T and B lymphocytes and in mononuclear phagocytes of sheep with naturally and experimentally acquired pulmonary adenomatosis. J. Virol. 73, 4004-4008
    109. Miller, A. D. (2008) Hyaluronidase 2 and its intriguing role as a cell-entry receptor for oncogenic sheep retroviruses. Semin. Cancer Biol. 18, 296-301
    110. Rai, S. K., Duh, F. M., Vigdorovich, V., Danilkovitch-Miagkova, A., Lerman, M. I., and Miller, A. D. (2001) Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. U. S. A. 98, 4443-4448
    111. Hsu, L. J., Chiang, M. F., Sze, C. I., Su, W. P., Yap, Y. V., Lee, I. T., Kuo, H. L., and Chang, N. S. (2016) HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Frontiers in cell and developmental biology 4, 141
    112. Hung, Y. C., Chang, W. C., Chen, L. M., Chang, Y. Y., Wu, L. Y., Chung, W. M., Lin, T. Y., Chen, L. C., and Ma, W. L. (2014) Non‐Genomic Estrogen/Estrogen Receptor α Promotes Cellular Malignancy of Immature Ovarian Teratoma In Vitro. J. Cell. Physiol. 229, 752-761

    下載圖示 校內:2022-08-27公開
    校外:2022-08-27公開
    QR CODE