研究生: |
阮建龍 Ruan, Jian-Long |
---|---|
論文名稱: |
反應濺鍍ZrAlN薄膜應用於銅/矽間擴散阻障層之研究 Investigation of reactive sputtered ZrAlN films as a diffusion barrier between Cu and Si |
指導教授: |
黃肇瑞
Huang, Jow-Lay |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 電阻率 、擴散阻障層 、直流反應磁控濺鍍法 、氮化鋯鋁 |
外文關鍵詞: | resistivity, ZrAlN, dc reactive magnetron sputtering, diffusion barrier |
相關次數: | 點閱:64 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當半導體製程技術邁入深次微米的階段,銅因具有較優異之導電性和電致遷移阻抗性而取代了鋁金屬製程。因為銅原子容易擴散至矽基材而造成元件的失效。因此必須於銅矽間導入一層擴散阻障層,以阻止銅和矽的相互擴散。實驗中嘗試利用直流反應磁控濺鍍法沈積ZrAlN薄膜,並探討製程參數對薄膜成份、微結構、電性及阻障性質的影響。
實驗結果發現ZrAlN薄膜為ZrN的NaCl結構。薄膜中部分的Zr原子會被Al原子取代,使得ZrAlN薄膜晶格常數比ZrN還要小。隨著氮氣流量增加,薄膜的晶粒尺寸減小。當氮氣流量大於5sccm,薄膜已轉變為非晶質結構。此非晶質化的趨勢,使得薄膜電阻率隨氮氣流量之增加而急遽升高。隨著基板偏壓的施加,ZrAlN薄膜會傾向於更散亂排列的結晶結構,此現象主要是與高能量離子轟擊下薄膜成長選擇之原則有關。此外,高能量離子轟擊亦會使得薄膜之晶粒尺寸變小。當基板偏壓為-75V時,薄膜有最低之電阻率為113.8 μΩ-cm。
實驗中並以最佳參數(氮氣流量:2ccm、基板偏壓:-60V)濺鍍之ZrAlN薄膜為擴散阻障層,探討不同熱處理溫度下ZrAlN薄膜於銅矽間的阻擴散性質。由XRD、片電阻、SEM及AES縱深元素分析之結果顯示,在800℃熱處理30分鐘後,ZrAlN薄膜仍能有效阻止銅矽之間的擴散反應發生。
As semiconductor device technology approached the deep sub-micron process requirements, copper has replaced aluminum in the interconnect metallization due to its good electrical conductivity and excellent resistance of electromigration. However, Cu-silicide compounds would be easily formed through the reaction between copper and silicon. Therefore, it is necessary to introduce a diffusion barrier between Cu and Si for preventing the inter-diffusion of copper and silicon. In this study, ZrAlN films were grown onto Si(100) by d. c. reactive magnetron sputtering. The effects of process parameters on the composition, microstructure, electrical property and barrier performance of films have been investigated.
Experimental results showed that the crystal structure of ZrAlN films is NaCl type and the lattice constant of ZrAlN films was smaller than that of ZrN. The reduction of average lattice constant was induced by partially substituting Zr with Al. The grain size of films decreased with the increasing nitrogen flow rate. As nitrogen flow rate was larger than 5sccm, the microstructure of the film became amorphous and resulted with the rapid increase of resistivity.
The preferred orientation of ZrAlN films gradually developed toward (200) plane with the increasing of substrate bias. It is associated with the evolution selection of the film growth under high energy ion bombardment. In addition, high energy ion bombardment also decreased the grain size of films. When substrate bias was equal to -75V, the lowest resistivity of 113.8 μΩ-cm was obtained.
The barrier property of ZrAlN films between Cu and Si annealed at various temperatures has also been studied. Results of X-ray diffraction analysis, sheet resistance measurement, scanning electron microscopy and Auger electron spectroscopy all indicated the absence of inter-diffusion within Cu / ZrAlN(bias: -60V) / Si samples, annealed at 800℃ in vacuum for 30 minutes.
參考文獻
[1] 潘扶民, 積體電路分析量測技術的現況與未來發展, 毫微米通訊, Vol. 6,No. 3 (1999).
[2] 曾偉志, 矽半導體元件中之金屬導線製程簡介, 金屬工業, Vol. 33, No. 3, 96 (1999).
[3] S. P. Murarka, “Low Dielectric Constant Materials for Interlayer Dielectric Applications”, Solid State Technology, 39 (3), p.83 (1996).
[4] 吳文發, 秦玉龍, 電遷移效應對銅導線可靠度之影響, 毫微米通訊, Vol. 6, No. 1, p.17 (1999).
[5] X. W. Lin, Dipu Pramanik, “Future Interconnect Technologies and Copper Metallization”, Solid State Technology, 10, p.63 (1998).
[6] R.J. Gutmann, T. P. Chow, A. E. Kaloyeros, W. A. Lanford ,and S. P. Murarka, “Thermal Stability of On-chip Copper Interconnect Structures”, Thin Solid Films, 262, p.177 (1995).
[7] N. Awaya., H. Inokawa, E. Yamamoto, Y. Okazaki, M. Miyake, Y. Arita ,and T. Kobayashi, “Evaluation of a Copper Metallization Process and the Electric characteristics of Copper-interconnected
Quarter-micron CMOS”, IEEE Trans. Electron Devices, 43, p.1206 (1996).
[8] J. Tao, N. W. Cheung, and C. Hu, “Electromigration Characteristics of Copper Interconnects”, IEEE Electron Device Letters., 14, p.249 (1994).
[9] C. S. Liu, L. J. Chen, ”Room-Temperature oxidation of Silicon in the Presence of Cu3Si”, Thin Solid Films, 262, p.187 (1995).
[10] C. S. Liu, L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Cu Thin Films on Atomically Cleaned (111)Si. I. Phase Formation and Interface Structure”, J. Appl. Phys , 74, p.5001 (1993).
[11] 吳文發, 黃麒峰, 銅製程之擴散阻障層, 毫微米通訊, Vol. 6, No. 4, p.30 (1999).
[12] Jung-Chao Chiou, Hong-I Wang, and Mao-Chieh Chen, “Dielectric Degradation of Cu/SiO2/Si Structure During Thermal Annealing”, J. Electrochem. Soc., 143, p.990 (1996).
[13] I.Sun, Maenpa M-A, Nicolet & M. Lumoajarvi, “Thermal Stability of Hafnium and Titanium Nitraide Diffusion Barrier in Multilayer Contacts to Silicon”, J, Electrochem. Soc., 103, p.1215 (1983).
[14] K. Abe, Y. Harada, and H. Onoda, “Study of Crystal Orientation in Cu Films on TiN Layered Structures”, J. Vac. Sci & Technol. B17, p.1464 (1999).
[15] M. Takeyama, A. Noya, and K. Sakanishi, “Diffusion Barrier Properties of ZrN Films in the Cu/Si Contact Systems”, J. Vac. Sci. Technol., B18, No. 3, p.1333 (2000).
[16] J. Tao, N. W. Cheung, and C. Hu, “Characterization and Modeling of Electromigration Failures in Multilayered Interconnects and Barrier Layer Materials”, IEEE Trans. Electron Devices., Vol. 43, p.1819 (1996).
[17] H. Wiesenberger, W. Lengauer & P. Ettmayer, “Reactive Diffusion and Phase Equilibria in The V-C, Nb-N, Ta-C and Ta-N Systems”, Acta. Mater., Vol. 46, No. 2, p.651 (1998).
[18] A. E. Kaloyeros & E. Eisenbraun, “Ultrathin/Liners for Gigascale Copper Metallization”, Anuu. Rev. Mater. Sci., 30, p.363 (2000).
[19] Hideto Yanagisawa, Katsutaka Sasaki, Yoshio Abe, Midori Kawamura, and Satoko Shinkai, “Study on Preparation Conditions of High Quality ZrN Thin Films Using a Low Temperature Process”, Jpn. J. Appl. Phys., 37, p.5714 (1998).
[20] O. Kubaschewski and C. B. Alcock, “Metallurgical Thermo-Chemistry”, Pergamon Press, New York, 5th Edition, 1979.
[21] H. Spillmann, P. R. Willmott, M. Morstein and P. J. Uggowitzer, “ZrN, ZrxAlyN and ZrxGayN Thin Films-Novel Materials for Hard Coatings Grown Using Pulsed Laser Deposition”, Appl. Phys. A, 73, p.441 (2001).
[22] 許博淵, 反應濺鍍TiAlN薄膜的製程參數及性質之研究, 國立成功大學材料科學及工程研究所, 博士論文, 民國八十五年.
[23] Takashi Matsunaga, Masaaki Yoshitake, Toshikazu Nosaka and Akio Okamoto, “Preparation of Reactive Magnetron Sputtered Zr-Al-N Films and Their Properties”, J. Vac. Soc. Jpn., 45 (6), p.525 (2002). (in Japanese)
[24] Brian Chapman, “Glow discharge process”, John Wiley and Sons, New York, 1980.
[25] S. M. Rossnagel et al., “Handbook of Plasmas Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A, 1982.
[26] D. M. Mattox, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U. S. A., 1982.
[27] 莊達人 編著, “VLSI製造技術”, 高立圖書有限公司, 1995.
[28] J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci. Technol., 11, p.666-670 (1974).
[29] H. T. G. Hentzell, C. R. M. Grovenor, and D. A. Smith, “Grain Structure Variation with Temperature for Evaporated Metal Films”, J. Vac. Sci. Technol., A2, p.218-219 (1984).
[30] P. B. Barna, and M. Adamik, “Fundamental Structure Forming Phenomena of Polycrystalline Films and The Structure Zone Models”, Thin Solid Films, 317, p.27-33 (1998).
[31] S. R. Willson, C. J. Tracy, “Handbook of Multilevel Metallization for Integrated Circuits”, Noyes Publications, Park Ridge, New Jersey, U.S.A, 1993.
[32] H. P. Kattelus and M.-A. Nicolet, “Diffusion Barrier in Semiconductor Contact Metallization “, California Institute of Technology, Pasadena, California U.S.A.
[33] M.-A. Nicolet, “Diffusion Barrier in Thin Films”, Thin Solid Films, 52, p.415-443 (1978).
[34] R. S. Nowicki and I. Wang, J. Vac. Sci. Technol., 15, p.235 (1978).
[35] K. Nakamura, S. S. Lau, M.-A. Nicolet and J. W. Mayer, “Ti and V Layers Retard Interaction Between Al Films and Polycrystalline Si”, Appl. Phys. Lett., 28, p.277 (1976).
[36] R. S. Nowicki, J. M. Harris, M.-A. Nicolet and I. V. Mitchell, “Studies of The Ti-W/Au Metallization on Aluminum”, Thin Solid Films, 53 (2), p.195-205 (1978).
[37] K. N. Tu and R. Rosenberg, “Mass Transport in Layered Polycrystalline Thin Films”, Thin Solid Films, 13 (1), p.163-167 (1972).
[38] X. Sun, E. Kolawa, S. Im, C. Garland and M.-A. Nicolet, “Effect of Si Reactively Sputtered TiSiN Films on Structure and Diffusion Barrier Performance”, Appl. Phys. A65, p.43-45 (1997).
[39] James W. Mayer and S. S. Lau, “Electronic Materials Science: For Integrated Circuits in Si and GaAs”, Macmillan, U.S.A., chap.11, p.306-337.
[40] H. P. Klug, L. E. Alexander, “X-Ray Diffraction Procedures”, Wiley, New York, 1974.
[41] H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser and J.-C. Parlebas, “Investigations on Non-Stoichiometric Zirconium Nitrides”, Appl. Surf. Sci., 200, p.231-238 (2002).
[42] Walter H. Class, 楊錦章 譯, ”基礎濺鍍電流”, 電子發展月刊, Vol. 68, p.13-40 (1983).
[43] Kevin S. Robinson and Peter M. A. Sherwood, “X-Ray Photoelectron Spectroscopic Studies of The Surface of Sputter Ion Plated Films”, Surface & Interface Analysis, 6 (6), p.261-266 (1984).
[44] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, and M. Hecq, “Study of ZrN Layers Deposited by Reactive Magnetron Sputtering”, Surface & Coatings Technology, 174-175, p240-245 (2003).
[45] R. Brenier, J. Mugnier and E. Mirica, “XPS Study of Amorphous Zirconium Oxide Films Prepared by Sol-Gel”, Applied Surface Science, 143, p.85-91 (1999).
[46] I. Bertoti, M. Mohai, J. L. Sullivan and S. O. Saied, “Surface Chemical Changes in PVD TiN Layers Induced by Ion Bombardment”, Surface & Interface Analysis, 21, p.467-473 (1994).
[47] Tsutom Yotsuya, Masaaki Yoshitake and Takao Kodamat, “Low-Temperature Thermometer Using Sputtered ZrNx Thin Film”, Cryogenics, 37 (12), p.817-822 (1998).
[48] J.-E. Sundgren, B.-O. Johansson and S.-E. Karlsson, “Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide I:Influence of Process Parameters on Film Composition”, Thin Solid Films, 105, p.353-366 (1983).
[49] J. W. Coburn, E. Taglauer and E. Kay, “Study of The Neutral Species RF Sputtered from Oxide Targets”, Jpn. J. Appl. Phys. Suppl. 2, p.501-504 (1974).
[50] D. N. Lee, “A Model for Development of Orientation of Vapour Deposits”, J. Mater. Sci., 24, p.4375-4378 (1989).
[51] 楊恆傑, 直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究, 國立成功大學材料科學及工程研究所, 碩士論文, 民國九十一年.
[52] B. K. Tay, X. Shi, H. S. Yang, H. S. Tan, D. Chua, and S. Y. Teo, “The Effect of Deposition Conditions on The Properties of TiN Thin Films Prepared by Filtered Cathodic Vacuum-Arc Technique”, Surf. Coat. Technol., 111, p.229-233 (1999).
[53] Milton Ohring, “The Materials Science of Thin Films”, Academic Press, New York, 1992.
[54] Bor-Yuan Shew, Jow-Lay Huang, and Ding-Fwu Lii, “Effect of R.F. Bias and Nitrogen Flow Rates on The Reactive Sputtering of TiAlN Films”, Thin Solid Films, 293, p.212-219 (1997).
[55] P. Sigmund, “Theory of Sputtering Ⅰ. Sputtering Yield of Amorphous and Polycrystalline Targets”, Phys. Rev., 184 (2), p.383-416 (1969).
[56] R. D. Bland, G. J. Kominiak and D. M. Mattox, “Effect of Ion Bombardment During Deposition on Thick Metal and Ceramics Deposits”, J. Vac. Sci. Technol., 11 (4), p.671-674 (1974).
[57] J.-E. Sundgren, B.-O. Johansson and S.-E. Karlsson, “Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide III:Influence of Substrate Bias on Composition and Structure”, Thin Solid Films, 105, p.385-393 (1983).
[58] A. C. Vlasveld, S. G. Harris, E. D. Doyle, D. B. Lewis and W. D. Munz, “Characterisation and Performance of Partially Filtered Arc TiAlN Coatings”, Surf. Coat. Technol., 149, p.217-224 (2002).
[59] P. J. Martin, A. Bendavid, L. S. Wielunski, I. Katardjiev and S. Berg, “Preferential Sputtering Effects in The Deposition of TiAl Films by Filtered Cathodic Arc Deposition”, Nuclear Inst. Meth. Phys. Res. B, 129, p.207-209 (1997).
[60] 賈穎昌, 以反應磁控濺鍍法於壓克力基材上披覆氧化銦錫薄膜之研究, 國立成功大學材料科學及工程研究所, 碩士論文, 民國八十六年.
[61] J. Pelleg, L. Z. Zevin and S. Lungo, “Reactive-Sputter-Deposited TiN Films on Glass Substrates”, Thin Solid Films, 197, p.117-128 (1991).
[62] U. C. Oh and Jung Ho Je, “Effects of Strain Energy on The Preferred Orientation of TiN Thin Films”, J. Appl. Phys., 74 (3), p.1692-1696 (1993).
[63] W. Ensinger, “Growth of Thin Films with Preferential Crystallographic Orientation by Ion Bombardment during Deposition”, Surface and Coatings Technology, 65, p.90-105 (1994).
[64] G. Håkansson and J. –E. Sundgren, “Microstructure and Physical Properties of Polycrystalline Metastable Ti0.5Al0.5N Alloys Grown by DC Magnetron Sputter Deposition”, Thin Solid Films, 153, p.55-65 (1987).
[65] A. Cavaleiro, M. T. Vieira and G. Lemperiere, “Influence of Deposition Conditions on The Morphology of Sputtered W-C-(Co) Films”, Thin Solid Films, 213, p.6-12 (1992).
[66] Wen-Jun Chou, Ge-Ping Yu and Jia-Hong Huang, “Bias Effect of Ion-Plated Zirconium Nitride Film on Si(100)”, Thin Solid Films, 405, p.162-169 (2002).
[67] C. P. Liu and H. G. Yang, “Systematic Study of The Evolution of Texture and Electrical Properties of ZrNx Thin Films by Reactive DC Magnetron Sputtering”, Thin Solid Films, 444, p.111-119 (2003).
[68] Ki-Chul Park and Ki-Bum Kim, “The Effect of Density and Microstructure on The Performance of TiN Barrier Films in Cu Metallization”, J. Appl. Phys., 80 (10), p.5674-5681 (1996).
[69] W. H. Lee, Y. L. Kuo, H. J. Huang and C. P. Lee, “Effect of Density on The Diffusion Barrier Property of TiNx Films Between Cu and Si”, Materials Chemistry and Physics, 85, p.444-449 (2004).
[70] J. –W. Lim, K. Mimura, and M. Isshiki, “Suppression of Cu Agglomeration in The Cu/Ta/Si Structure by Capping Layer”, Science and Technology of Advanced Materials, 4, p.391-396 (2003).
[71] Ki-Chul Park, Soo-Hyun Kim and Ki-Bum Kim, “Effect of Ion Bombardment During Chemical Vapor Deposition of TiN Films”, Journal of The Electrochemical Society, 147 (7), p.2711-2717 (2000).