簡易檢索 / 詳目顯示

研究生: 張弘櫻
Chang, Hung-Ing
論文名稱: 溶液相合成:二茚基[1,2,3,4-defg:1',2',3',4'-mnop]筷與碗狀分子反轉能障之量測
Diindeno[1,2,3,4-defg;1',2',3',4'-mnop]chrysenes: Solution-Phase Synthesis and the Bowl-to-Bowl Inversion Barrier
指導教授: 吳耀庭
Wu, Yao-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 57
中文關鍵詞: 碳-碳鍵耦合分子間反轉能障
外文關鍵詞: C-C bond coupling, Bowl-to-bowl inversion barrier
相關次數: 點閱:167下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是利用簡單的合成方法,在較低溫及液相的條件下,製備碗狀化合物及其衍生物,取代真空熱裂解法(FVP)。以往的合成方法,因為有低官能基容忍度、前驅物不易製備、反應溫度過高和不易純化等缺點,故我們希望以過渡金屬催化的方式,來進行碗狀化合物的合成。我們透過合成出的有機平面中間物,以過渡金屬催化,進行碳-碳鍵耦合,而得到所要的碗狀化合物。另一方面,我們也將導入異丙基為碗狀化合物上的取代基,來測量其分子間的反轉能障。由氫核磁共振光譜測得的結果,我們觀察到在零下八十度時其訊號峰圖形和其他較高溫度時的圖形有所差異。
    鈀金屬催化劑、鹼、溶劑及反應溫度於此反應中均扮演關鍵的角色。透過一系列的測試實驗,我們已找出反應最佳化的條件:將9-(2,6-二氯苯)-10-(2-氯苯)菲、二氯雙(三環己基磷)鈀(II)、1,8-二氮雜環十一烯和碳酸銫,溶於N-甲基吡咯酮,在150 ºC下,經過約48小時,可得到21%產率的二茚基[1,2,3,4-defg:1',2',3',4'-mnop]筷,利用相同的操作步驟,亦可得到異丙基取代的碗狀化合物。

    The goal of this research is to develop a simple synthetic method for the preparation of bowl-shaped compounds and their derivatives at lower temperature and in solution phase to replace the method of flash vacuum pyrolysis (FVP). In the past synthetic methods existed some drawbacks, including low functional group tolerance, inconvenient precursor preparation, high reaction temperature and difficulty of purification, here we hope to use transition metals to synthesize bowl-shaped compounds. We employed the transition metal, Pd, an activator of the organic plane intermediate to proceed carbon-carbon bond coupling reaction. Meanwhile, we introduced an isopropyl substitution group to the bowl-shaped compound, and measured its bowl-to-bowl inversion barrier. The result of the 1H NMR spectrum, we found, the peak have difference signal at 80 oC with other temperature.
    Systematic studies of the reaction conditions revealed that palladium catalyst, base, solvent and temperature all play key roles. The reaction conditions have been optimized. Upon heating 9-(2,6-dichlorophenyl)-10 -(2-chlorophenyl)phenanthrene in NMP at 150 ºC for 48 hours with a mixture of PdCl2(PCy3)2, DBU and Cs2CO3 can obtain diindeno[1,2,3,4- defg:1',2',3',4'-mnop]chrysene in 21% yield. Utilizing the same operation step can also give the isopropyl-substituted compound.

    目錄 中文摘要 .................................................. I Abstract ................................................ II 誌謝 ................................................... III 表目錄 .................................................. VI 圖目錄.................................................. VII 壹、 前言 ................................................. 1 貳、 結果與討論 ........................................... 12 一、由Larock's合成方法合成菲類化合物 ....................... 12 二、各種反應條件對環化反應的探討 ............................ 14 (1)、探討鈀金屬錯合物對環化反應的影響 ....................... 15 (2)、探討鹼對環化反應的影響 ................................ 17 (3)、探討溶劑對環化反應的影響 .............................. 19 (4)、探討反應溫度對環化反應的影響 .......................... 21 (5)、探討反應時間對環化反應的影響 .......................... 23 (6)、探討鈀金屬催化劑量對環化反應的影響 ..................... 25 (7)、最佳化條件合成碗狀化合物 .............................. 27 三、物理性質的探討 ........................................ 29 參、 結論 ................................................ 32 肆、 實驗 ................................................ 34 伍、 參考文獻............................................. 46 陸、 附錄 ................................................ 48 核磁共振光譜圖.............................................48

    (1) Rabideau, P. W.; Sygula, A. Accounts Chem. Res. 1996, 29, 235.
    (2) Scott, L. T. Pure Appl. Chem. 1996, 68, 291.
    (3) Tsefrikas, V. M.; Scott, L. T. Chem. Rev. 2006, 106, 4868.
    (4) Wu, Y. T.; Siegel, J. S. Chem. Rev. 2006, 106, 4843.
    (5) Bronstein, H. E.; Scott, L. T. J. Org. Chem. 2008, 73, 88.
    (6) Bronstein, H. E.; Choi, N.; Scott, L. T. J. Am. Chem. Soc. 2002, 124,8870.
    (7) Hagen, S.; Nuechter, U.; Nuechter, M.; Zimmermann, G. Tetrahedron Lett. 1994, 35, 7013.
    (8) Hagen, S.; Nuechter, U.; Nuechter, M.; Zimmermann, G. Polycycl. Aromat. Compd. 1995, 4, 209.
    (9) Mills, N. S.; Malandra, J. L.; Hensen, A.; Lowery, J. A. Polycycl. Aromat. Compd. 1998, 12, 239.
    (10) Pogodin, S.; Biedermann, P. U.; Agranat, I. J. Org. Chem. 1997, 62,2285.
    (11) Schaden, G. J. Org. Chem. 1983, 48, 5385
    (12) Meyer, H.; Bondy, R.; Eckert, A. Monatsh. Chem. 1912, 33, 1447
    (13) Jackson, E. A.; Steinberg, B. D.; Bancu, M.; Wakamiya, A.; Scott,L. T. J. Am. Chem. Soc. 2007, 129, 484.
    (14) Marcinow, Z.; Sygula, A.; Ellern, A.; Rabideau, P. W. Org. Lett.2001, 3, 3527.
    (15) Reisch, H. A.; Bratcher, M. S.; Scott, L. T. Org. Lett. 2000, 2, 1427.
    (16) Steinberg, B. D.; Jackson, E. A.; Filatov, A. S.; Wakamiya, A.;Petrukhina, M. A.; Scott, L. T. J. Am. Chem. Soc. 2009, 131, 10537.
    (17) Wang, L.; Shevlin, P. B. Org. Lett. 2000, 2, 3703.
    (18) Larock, R. C.; Doty, M. J.; Tian, Q. P.; Zenner, J. M. J. Org.Chem. 1997, 62, 7536.
    (19) Barrows, S. E.; Eberlein, T. H. J. Chem. Educ. 2005, 82, 1329.
    (20) Haddon, R. C. J. Phys. Chem. 1987, 91, 3719.
    (21) Haddon, R. C. J. Phys. Chem. A 2001, 105, 4164.
    (22) Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. J. Org.Chem. 2005, 70, 5713.
    (23) Seiders, T. J.; Baldridge, K. K.; Grube, G. H.; Siegel, J. S. J. Am.Chem. Soc. 2001, 123, 517.
    (24) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 301, 1878.
    (25) Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T.; Hirao, T. J. Am.Chem. Soc. 2005, 127, 11580.
    (26) Schwab, G.; Stern, D.; Stalke, D. J. Org. Chem. 2008, 73, 5242.
    (27) Yeh, A.; Shih, C. Y.; Lin, L. L.; Yang, S. J.; Chang, C. T. Life Sci. J.2009, 6, 1.
    (28) Coulson, D. R.; Satek, L. C.; Orim, S. O. Inorg. Synth. 1972, 13, 121.
    (29) Jenkins, J. M.; Verkade, J. C. Inorg. Synth. 1968, 11, 108.
    (30) Schlosser, M.; Heiss, C.; Marzi, E.; Scopelliti, R. Eur. J. Org. Chem.2006, 4398.
    (31) Musso, D. L.; Clarke, M. J.; Kelley, J. L.; Boswell, G. E.; Chen, G.Org. Biomol. Chem. 2003, 1, 498.

    下載圖示
    2015-07-05公開
    QR CODE