簡易檢索 / 詳目顯示

研究生: 謝宜彤
Hsieh, Yi-Tung
論文名稱: 同軸式紅外線高溫計於三維金屬雷射披覆製程之溫度控制及披覆形貌研究
Research on the temperature control and clad contour of the 3D metallic laser cladding by a coaxial infrared pyrometer
指導教授: 林震銘
Lin, Jehnming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 雷射披覆同軸紅外線高溫計PID溫度控制
外文關鍵詞: Laser Cladding, Coaxial Infrared Pyrometer, PID Temperature Control
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用20W的光纖雷射進行同軸雷射披覆實驗,搭配紅外線高溫計量測熔池溫度,並且以LabVIEW軟體建立PID控制器進行熔池溫度回授控制,探討熔池溫度受控制與無控制對披覆層形貌的影響。
    在數值分析部分,使用ANSYS軟體分析披覆製程中移動熱源經過平面迴圈路徑的轉折角,模擬熔池溫度的變化趨勢。在實驗方面,比較側向和同軸向紅外線高溫計對熔池溫度控制的效率與對披覆層形貌的影響。藉由平面多層披覆結果說明在導入熔池溫度控制系統後,得到的披覆層形貌較平整,亦抑制高層數因熱堆積造成熔池溫度上升的狀況。從凹槽修補披覆實驗中,溫度控制系統可消除披覆製程上邊界斜角產生的高溫隆起的狀況。從平面迴圈披覆實驗中可以發現,當披覆時熔池無溫度控制,披覆層會在兩端轉折角有高溫隆起的現象,掃瞄速度越慢隆起越高;當加入溫度控制系統後,轉折角位置的隆起現象消失,披覆層形貌較平整。

    In this study, a 20W fiber laser was used for the coaxial laser cladding.The temperature of the molten pool was measured with a infrared pyrometer. A PID controller was established by LabVIEW software to control the cladding temperature.The influence of controlled and uncontrolled molten pool temperature on the cladding layer contour was discussed.
    ANSYS software was used to analyze the change of the molten pool temperature when the laser beam moving through the turning points of the cladding path in the process. The efficiency of controlling the temperature of the molten pool by lateral and coaxial infrared pyrometers was compared separately in the experiments. The influence on the contour of the cladding layer with temperature control was discussed. The results of the planar multi-layer cladding experiment showed a smooth contour of the cladding layer. It suppressed the rises of the molten pool temperature due to heat accumulation after multiple cladding.The results show that the temperature control system could eliminate the temperature peak caused by the inclined substrate in a cladding case for repairing. It could be found that the cladding layer with high temperature peaks occur at the turning points of the cladding path without temperature control. High temperature peaks would cause clad bulging. The slower the scanning speed, the higher the clad bulging. The bulging phenomenon at the turning points disappeared dramatically when the temperature control system was applied.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明 XIX 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 2 1-2.1雷射披覆於葉片修補的應用 2 1-2.2 熔池溫度於披覆形貌之影響 4 1-2.3雷射披覆製程導入回授控制系統的應用 7 1-3 研究方法 12 1-4 本文架構 13 第二章 應用理論 15 2-1雷射光特性[13] 15 2-1.1 高斯模態於空間中的聚焦 16 2-2熔池溫度與披覆層關係 18 2-2.1 雷射披覆機制[14] 18 2-2.2加工參數對熔池溫度的影響 19 2-2.3熔池溫度與披覆層高度關係 20 2-3 紅外線高溫計[19] 22 2-3.1 熱輻射 22 2-3.1 紅外線感測器 24 2-4 溫度控制理論[22] 26 2-4.1 溫度ON/OFF控制模式 26 2-4.2 PID控制 27 2-4.3 PID控制器係數調整[22] 30 第三章 數值模擬與溫度控制系統 32 3-1 雷射披覆路徑溫度場模擬 32 3-1.1 軟體介紹 32 3-1.2 模型設定與模擬條件 33 3-1.3 高斯熱源[24] 36 3-1.4 熔池溫度於披覆路徑上的變化 37 3-2 PID控制系統 42 3-2.1 回授控制系統流程 42 3-2.2 LabVIEW 44 3-2.3 PID控制器係數調整[22] 46 第四章 實驗 48 4-1實驗設備與製程參數 48 4-1.1 雷射位移計 51 4-1.2 紅外線高溫計[25] 53 4-1.3 高溫計訊號校正[25] 55 4-2 PID控制器參數調整 57 4-2.1 經驗調整公式 57 4-2.2 實驗調整法 59 4-3側向溫控實驗 64 4-3.1 實驗配置 64 4-3.2 側向溫控實驗 64 4-4同軸溫控披覆實驗 68 4-4.1 實驗配置 68 4-4.2 同軸溫控與側向溫控比較 69 4-4.3 平面多層披覆實驗 70 4-5凹槽多層披覆 83 4-5.1 實驗配置與路徑規劃 83 4-5.2 凹槽實驗結果 85 4-6迴圈多層披覆 86 4-6.1 實驗配置與路徑規劃 87 4-6.2 迴圈路徑披覆實驗 88 4.7結果與討論 92 第五章 結論 95 5-1 綜合討論 95 5-2 相關建議與未來發展 100 參考文獻 101

    [1] S. Nowotny, S. Scharek, E. Beyer and K. Richter, "Integrated laser cell for combined laser cladding and milling", Assem-bly Automation, 30(1), pp. 36-38, 2010.
    [2] G. Spöcker, T. Schreiner, T. Huwer and K. Arntz, “Programming of adaptive repair process chains using repair features”, Journal of Computational Design and Engineering, v3, pp. 53-62, 2016.
    [3] X. Peraranda, S. Moralejo A. Lamikizand J. Figueras, “An adaptive laser cladding methodology for blade tip repair”.,International Journal of Advanced Manufacturing Technology,V92, pp. 4337-4343, 2017.
    [4] M. Hao and Y. Sun, “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach”, Heat and Mass Transfer, v64,pp. 352-360, 2013.
    [5] X. He, G. Yu and J. Mazumder, “Temperature and composition profile during double-track laser cladding ofH13 tool steel”,J. Phys. D, Appl. Phys,V43(1), 2010.
    [6] A. Calleja, I. Tabernero, J. A. Ealo, F.J. Campa, A. Lamikiz and L. Lacalle, “Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding”,Journal of Advanced Manufacturing Technology,v74(9), pp. 1219-1228,2014.
    [7] D. Salehi and M. Brandt, “Melt pool temperature control using LabVIEW in Nd:YAG laser blown powdercladding process”, The International Journal of Advanced Manufacturing Technology, v29, pp. 273-278, 2006.
    [8] G. Bi, B. Schurmann, A. Gasser, K. Wissenbach and R. Poprawe ,“Development and qualification of a novel laser-cladding head with integrated sensors”, Machine Tools & Manufacture, v47 pp. 555–561, 2007.
    [9] A. Fathi, A. Khajepour, M. Durali and E. Toyserkani, “Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller”, Journal of Manufacturing Science and Engineering,v130(3), pp. 031003(1-11), 2008.
    [10] P. Colodrón, J. Fariña, J. Rodríguez-Andina, F. Vidal, L. Mato and M.A. Montealegre, “Performance Improvement of a Laser Cladding System through FPGA-Based Control”,37th Annual Conference on IEEE Industrial Electronics Society, pp. 2814-2819,2011.
    [11] L. Song and J. Mazumder,“Feedback Control of Melt Pool Temperature During Laser Cladding Process”,IeeeTransactions on Control Systems Technology, v19, No.6, pp. 1349-1356, 2011.
    [12] S. Donadello, M. Motta, A. G. Demir and B. Previtali, “Monitoring of laser metal deposition height by means of coaxial laser triangulation”,Optics and Lasers in Engineering ,v112, pp. 136-144, 2019
    [13] W. Steen and J. Mazumder,“Laser material processing”,4th Edition, Springer,London, pp. 11-135,2010.
    [14] E. Toyserkani, S. Corbin and A. Khajepour“Laser cladding”, CRC press,2004
    [15] E. Toyserkani, A. Khajepour and S. Corbin,“3-D finite element modeling of laser cladding by powder injection:effect of laser pulse shaping on the process”,Optics and Laser in Engineering,v41, pp. 849-867,2004.
    [16] K. A. Elijah,“Principles of Laser Materials Processing”,Woodhead Publishing Ltd.,2010.
    [17] B. Liu, L. Tan, Z. Zhao, H. Zhang, J. Lin, P. Bai, L. Wang and Y. Cheng,“Temperature Distribution Laws During Selective Laser Melting Process of Nickel Base Alloy GH4169”, Chinese Materials Conference 2017: Advances in Materials Processing,pp. 335-343,2018
    [18] F. Kong and R. Kovacevic,“Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process”,Metallurgical and Materials Transactions,v41, pp.1310-1320,2010
    [19] 何適生, 熱工參數測量及儀表, 水力電力出版社, 1990
    [20] D. P. DeWitt and G. D. Nutter, “Theory and practice of radiation thermometry”, Wiley Companies, 1989
    [21] H. Y. Yu,D. B. Sun,C. B. Huang and D. G. Yang, “Technique and properties of sealing treatment on the electro less Ni-P alloy coatings ”, Journal of Functional Materials, v32(3), pp. 262-263, 2001
    [22] S. N. Norman,“Control Systems Engineering 6th Edition”, Wiley Companies,2011
    [23] F. Kong and R. Kovacevic, “An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding ”, Materials Processing Technology, v211, pp. 1247-1259, 2011.
    [24] “Moving Heat guide”,ANSYS Inc.,2016
    [25] 王騰洋,“雷射披覆於二維不鏽鋼葉片之修補研究”,國立成功大學機械工程研究所碩士論文,2018
    [26] M. Azadeh, “Fiber Optics Engineering”, Springer Science & Business Media, p.171, 2009.
    [27] 陳芳辰,“多軸雷射披覆於非平面積層之幾何控制”, 國立成功大學機械工程研究所碩士論文,2016

    無法下載圖示 校內:2030-07-21公開
    校外:2030-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE