| 研究生: |
謝宜彤 Hsieh, Yi-Tung |
|---|---|
| 論文名稱: |
同軸式紅外線高溫計於三維金屬雷射披覆製程之溫度控制及披覆形貌研究 Research on the temperature control and clad contour of the 3D metallic laser cladding by a coaxial infrared pyrometer |
| 指導教授: |
林震銘
Lin, Jehnming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 雷射披覆 、同軸紅外線高溫計 、PID溫度控制 |
| 外文關鍵詞: | Laser Cladding, Coaxial Infrared Pyrometer, PID Temperature Control |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用20W的光纖雷射進行同軸雷射披覆實驗,搭配紅外線高溫計量測熔池溫度,並且以LabVIEW軟體建立PID控制器進行熔池溫度回授控制,探討熔池溫度受控制與無控制對披覆層形貌的影響。
在數值分析部分,使用ANSYS軟體分析披覆製程中移動熱源經過平面迴圈路徑的轉折角,模擬熔池溫度的變化趨勢。在實驗方面,比較側向和同軸向紅外線高溫計對熔池溫度控制的效率與對披覆層形貌的影響。藉由平面多層披覆結果說明在導入熔池溫度控制系統後,得到的披覆層形貌較平整,亦抑制高層數因熱堆積造成熔池溫度上升的狀況。從凹槽修補披覆實驗中,溫度控制系統可消除披覆製程上邊界斜角產生的高溫隆起的狀況。從平面迴圈披覆實驗中可以發現,當披覆時熔池無溫度控制,披覆層會在兩端轉折角有高溫隆起的現象,掃瞄速度越慢隆起越高;當加入溫度控制系統後,轉折角位置的隆起現象消失,披覆層形貌較平整。
In this study, a 20W fiber laser was used for the coaxial laser cladding.The temperature of the molten pool was measured with a infrared pyrometer. A PID controller was established by LabVIEW software to control the cladding temperature.The influence of controlled and uncontrolled molten pool temperature on the cladding layer contour was discussed.
ANSYS software was used to analyze the change of the molten pool temperature when the laser beam moving through the turning points of the cladding path in the process. The efficiency of controlling the temperature of the molten pool by lateral and coaxial infrared pyrometers was compared separately in the experiments. The influence on the contour of the cladding layer with temperature control was discussed. The results of the planar multi-layer cladding experiment showed a smooth contour of the cladding layer. It suppressed the rises of the molten pool temperature due to heat accumulation after multiple cladding.The results show that the temperature control system could eliminate the temperature peak caused by the inclined substrate in a cladding case for repairing. It could be found that the cladding layer with high temperature peaks occur at the turning points of the cladding path without temperature control. High temperature peaks would cause clad bulging. The slower the scanning speed, the higher the clad bulging. The bulging phenomenon at the turning points disappeared dramatically when the temperature control system was applied.
[1] S. Nowotny, S. Scharek, E. Beyer and K. Richter, "Integrated laser cell for combined laser cladding and milling", Assem-bly Automation, 30(1), pp. 36-38, 2010.
[2] G. Spöcker, T. Schreiner, T. Huwer and K. Arntz, “Programming of adaptive repair process chains using repair features”, Journal of Computational Design and Engineering, v3, pp. 53-62, 2016.
[3] X. Peraranda, S. Moralejo A. Lamikizand J. Figueras, “An adaptive laser cladding methodology for blade tip repair”.,International Journal of Advanced Manufacturing Technology,V92, pp. 4337-4343, 2017.
[4] M. Hao and Y. Sun, “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach”, Heat and Mass Transfer, v64,pp. 352-360, 2013.
[5] X. He, G. Yu and J. Mazumder, “Temperature and composition profile during double-track laser cladding ofH13 tool steel”,J. Phys. D, Appl. Phys,V43(1), 2010.
[6] A. Calleja, I. Tabernero, J. A. Ealo, F.J. Campa, A. Lamikiz and L. Lacalle, “Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding”,Journal of Advanced Manufacturing Technology,v74(9), pp. 1219-1228,2014.
[7] D. Salehi and M. Brandt, “Melt pool temperature control using LabVIEW in Nd:YAG laser blown powdercladding process”, The International Journal of Advanced Manufacturing Technology, v29, pp. 273-278, 2006.
[8] G. Bi, B. Schurmann, A. Gasser, K. Wissenbach and R. Poprawe ,“Development and qualification of a novel laser-cladding head with integrated sensors”, Machine Tools & Manufacture, v47 pp. 555–561, 2007.
[9] A. Fathi, A. Khajepour, M. Durali and E. Toyserkani, “Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller”, Journal of Manufacturing Science and Engineering,v130(3), pp. 031003(1-11), 2008.
[10] P. Colodrón, J. Fariña, J. Rodríguez-Andina, F. Vidal, L. Mato and M.A. Montealegre, “Performance Improvement of a Laser Cladding System through FPGA-Based Control”,37th Annual Conference on IEEE Industrial Electronics Society, pp. 2814-2819,2011.
[11] L. Song and J. Mazumder,“Feedback Control of Melt Pool Temperature During Laser Cladding Process”,IeeeTransactions on Control Systems Technology, v19, No.6, pp. 1349-1356, 2011.
[12] S. Donadello, M. Motta, A. G. Demir and B. Previtali, “Monitoring of laser metal deposition height by means of coaxial laser triangulation”,Optics and Lasers in Engineering ,v112, pp. 136-144, 2019
[13] W. Steen and J. Mazumder,“Laser material processing”,4th Edition, Springer,London, pp. 11-135,2010.
[14] E. Toyserkani, S. Corbin and A. Khajepour“Laser cladding”, CRC press,2004
[15] E. Toyserkani, A. Khajepour and S. Corbin,“3-D finite element modeling of laser cladding by powder injection:effect of laser pulse shaping on the process”,Optics and Laser in Engineering,v41, pp. 849-867,2004.
[16] K. A. Elijah,“Principles of Laser Materials Processing”,Woodhead Publishing Ltd.,2010.
[17] B. Liu, L. Tan, Z. Zhao, H. Zhang, J. Lin, P. Bai, L. Wang and Y. Cheng,“Temperature Distribution Laws During Selective Laser Melting Process of Nickel Base Alloy GH4169”, Chinese Materials Conference 2017: Advances in Materials Processing,pp. 335-343,2018
[18] F. Kong and R. Kovacevic,“Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process”,Metallurgical and Materials Transactions,v41, pp.1310-1320,2010
[19] 何適生, 熱工參數測量及儀表, 水力電力出版社, 1990
[20] D. P. DeWitt and G. D. Nutter, “Theory and practice of radiation thermometry”, Wiley Companies, 1989
[21] H. Y. Yu,D. B. Sun,C. B. Huang and D. G. Yang, “Technique and properties of sealing treatment on the electro less Ni-P alloy coatings ”, Journal of Functional Materials, v32(3), pp. 262-263, 2001
[22] S. N. Norman,“Control Systems Engineering 6th Edition”, Wiley Companies,2011
[23] F. Kong and R. Kovacevic, “An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding ”, Materials Processing Technology, v211, pp. 1247-1259, 2011.
[24] “Moving Heat guide”,ANSYS Inc.,2016
[25] 王騰洋,“雷射披覆於二維不鏽鋼葉片之修補研究”,國立成功大學機械工程研究所碩士論文,2018
[26] M. Azadeh, “Fiber Optics Engineering”, Springer Science & Business Media, p.171, 2009.
[27] 陳芳辰,“多軸雷射披覆於非平面積層之幾何控制”, 國立成功大學機械工程研究所碩士論文,2016
校內:2030-07-21公開