簡易檢索 / 詳目顯示

研究生: 邱重榮
Rong, Chiu-Chung
論文名稱: 電熱式微致動器疲勞實驗與分析
Fatigue Experiment and Analysis of Electro-Thermal Actuators
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 109
中文關鍵詞: 電熱式微致動器微機電疲勞有限元素分析
外文關鍵詞: MEMS, Actuator, Finite Element Method, Fatigue
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係針對U型電熱式微致動器(‘U shaped electro-thermal actuator’or ‘hot-cold-beam’)及V型電熱式微致動器(V shaped electro-thermal actuator)進行疲勞實驗,配合有限元素分析軟體ANSYSTM模擬分析,探討負載功率、操作頻率、微致動器溫度及微致動器尺寸對疲勞的影響,並得到微致動器疲勞曲線(S-N curve)。此外,模擬分析微致動器之等效阻尼及阻尼比,可正確評估撓曲量或操作頻率範圍。
    研究結果顯示,當負載功率較大時,微致動器溫度較高,結構內應力較大,微致動器較易發生疲勞破壞。若固定負載功率,改變操作頻率,高頻時微致動器具有較長之疲勞壽命,然此時微致動器振幅範圍較小。比較不同尺寸U型微致動器之疲勞曲線,發現於相同操作頻率及最大主應力條件下,小倍率微致動器疲勞壽期較長,然當倍率再增加時此現象則不明顯。另由結構動態分析可知U型微致動器其振動行為受空氣黏滯效應、結構與基材間摩擦、本身材料阻尼作用…等影響很大,造成微致動器阻斷頻率下降,也間接影響其疲勞壽命;而V型微致動器其結構勁度較大,阻尼作用對其運動行為影響不大。
    本研究可提供微致動器設計之參考,有效提昇可靠度及疲勞破壞預測之準確度。

    Fatigue analysis for planar flexural (U shaped) and bent-beam (V shaped) electro-thermal micro actuators is performed in this study. In addition to laboratorial fatigue life observations, finite element software, ANSYSTM, was adopted to interpret the S-N curve for the actuators. The influences of input power, operation frequency and temperature distribution on fatigue life are also investigated. A model of equivalent damping and damping ratio is also developed in the study and its results reveal that reasonable deflection range and operation frequency window for the micro actuators can be achieved.
    Based on the results, it is concluded that as driving electrical power increases, temperature range in actuators elevates that in turn yields internal stress range; therefore, shortens the fatigue life of the actuator. At the condition of constant driving power, higher operation frequency that limits the flexural deflection for the actuator results in longer fatigue life. Size effect on fatigue life is also observed, i.e. bigger actuators tend to deliver shorter fatigue life. However, the phenomenon is not obvious as the size of the actuators is raised further. The numerically structural dynamical analysis shows important influence of camping effects on the dynamical behavior as well as the fatigue life of the U-shaped actuators. Damping effects including air viscosity, friction force and material damping reflects the reduction of cutoff frequency. However, damping effect is insignificant on V-shaped actuators due to its higher stiffness in flexural direction than its counter part of U-shaped actuators.

    摘要.........................................Ⅰ 英文摘要.....................................Ⅱ 致謝........................................III 目錄.........................................IV 表目錄.......................................IX 圖目錄........................................X 符號表....................................XVIII 第一章緒論....................................1 1-1前言.......................................1 1-2研究動機與目的.............................1 1-3文獻回顧...................................2 1-4研究方法...................................2 1-5章節提要...................................3 第二章理論基礎................................4 2-1熱彈性變形理論.............................4 2-2電阻值計算.................................7 2-3電熱理論...................................8 2-4振動理論..................................13 2-5疲勞理論..................................17 第三章微致動器疲勞實驗.......................22 3-1微致動器製程..............................22 3-2微致動器作動原理..........................31 3-3疲勞實驗..................................33 第四章微致動器之分析模型.....................41 4-1模型假設..................................41 4-2模型建立與分析流程........................41 4-3尺寸及材料參數............................44 4-4邊界條件..................................50 4-5模型驗證..................................53 4-6交流負載之動態反應........................55 第五章 實驗與分析結果........................83 5-1模態分析..................................83 5-2疲勞實驗分析..............................86 第六章結論..................................104 6-1結論.....................................104 6-2未來研究方向.............................106 參考文獻....................................107

    [1] Comtois, J. H., et al (1997) Solid State Sensors and Actuators, Transducers’97, pp.769-772, 1997.
    [2] L. Que, J. S. Park, Y. B. Gianchandani,“Bent-Beam Electro-Thermal Actuators for High Force Applications,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS99), Orlando, Florida, Jan. 1999.
    [3] Lee, G. B., et al (2000), The 7th International Conference on New Actuators (Actuator 2000), June 19-21, 2000.
    [4] 張嘉桓,“V型彎曲懸樑熱動式微致動器尺寸動態反應最佳化分析,”國立成功大學工程科學系碩士論文(2001).
    [5] R. S. Chen, C. Kung and Gwo-Bin Lee,“Analysis of the optimal dimension on the electrothermal microactuator,” Journal of Micromechanics and Microengineering, pp.291-296, 2002.
    [6] Gwo-Bin Lee,Rong-Sheng Chen and Chieh J.Kung,“Analysis of Optimal Inclined Angles on V-Shaped Electro-Thermal Microactuators,” Journal of the Chinese Society of Mechanical Engineers, Vol.23, No.2, pp.155-162, 2002.
    [7] S. Brown, William Van Arsdell, Christopher L. Muhlstein,“Materials Reliability in MEMS Devices,” Transducers’97, Chicago, Illinois, IEEE.
    [8] R. A. Conant and R. S. Muller,“Cyclic Fatigue Testing of Surface-Micromachined Thermal Actuators,” ASME Internation Mechanical Engineering Congress and Exposition, Nov 15-20, 11998, Anaheim, CA, DSC-Vol. 66, pp. 273-277, 1998.
    [9] Long Que, Jae-Sung Park, Mo-Huang Li and Y. B. Gianchandani,“Reliability Studies of Bent-Beam Electro-Thermal Actuators,” IEEE Annual Internal Reliability Physics Symposium, San Jose, Califomia, 2000.
    [10] Kuo-Shen Chen, Xin Zhang and Reza Ghodssi,“Residual Stress and Failure Modeling of Thick PECVD Oxide Film for MEMS Application,” 第一屆海峽兩岸微系統研討會會議論文會議論文集, pp.264-269, May, 2000.
    [11] C.L. Muhlstein, S.B. Brown, R.O. Ritchie,“High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air,” Sensors and Actuators, A 94, pp.177-188, 2001.
    [12] D. M. Tanner,J. A. Walraven,S. M. Barnes,N. F. Smith, Femando Bitsie, S. E. Swanson,“Reliability of a MEMS Torsional Ratcheting Actuator." IEEE Annual Internal Reliability Physics Symposium, Orlando, Florida, 2001
    [13] Irving H. Shames, Francis A. Cozzarelli,“Elastic and Inelastic Stress Analysis,” Revised Printing, Taylor & Francis(1997).

    [14] ANSYS Menu,“Thermal-Electric Element,” Ch11. Table of Contents Theory Reference 5.7, March 2001.
    [15] J. P. Holman,“Heat Transfer,” International Student Edition, McGraw-Hill Book Co., Singapore(1986).
    [16] Ferdinand P. Beer & John J. Donovan,“Vector Mechanics For Engineering: Dynamics,” McGraw-Hill Book Co., Boston(1996).
    [17] E. Zahavi,“Fatigue Design,” CRC-Press, Boca Raton(1996).
    [18] J. A. Bannantine, J. I. Gomer, J. L. Handrock,“Fundamentals of Metal Fatigue Analysis,” Univ. of Illinois, Champaign(1990).
    [19] David A. Koester, R. Mahadevan, Busbee Hardy and K. W. Markus, “MUMPs Design Rule Handbook. Revision 7.0,” Cronos Integrated Microsystems, 2001.
    [20] ANSYS Menu,“ The Element Library,” Ch4. Element Reference 5.7 March 2001.
    [21] MCNC Run47 Data - http://www.memsrus.com/svcsdata.html
    [22] Jeffrey T. Butler,“Develop and Packaging of Microsystems Using Foundry Services,” Ph.D. Dissertation, USAF, June 1998.
    [23] Thomson, W. T.,“ Theory Vibration with Applications,” Prentice Hall, 1998.

    下載圖示 校內:立即公開
    校外:2003-07-16公開
    QR CODE