簡易檢索 / 詳目顯示

研究生: 張裕銘
Chang, Yu-Ming
論文名稱: 室溫合成單晶二氧化鈦奈米線之研究
Room-Temperature Synthesis of Single-Crystalline TiO2 Nanowires
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 205
中文關鍵詞: 催化劑室溫二氧化鈦奈米線單晶
外文關鍵詞: Single-crystalline, Nanowires, TiO2, Room temperature, Catalyst
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以一種新穎的方法,藉由使用適當的催化劑及射頻磁控濺鍍技術以合成單晶銳鈦礦二氧化鈦奈米線。整個製程、催化劑的製備以及濺鍍沉積系統皆在室溫下的環境進行。本研究以不同的催化劑前驅物及方法製備8大類的催化劑,所得的催化層隨即放置於射頻磁控濺鍍系統之真空腔體用以沉積二氧化鈦,結果發現這8大類的催化劑中,圓形的SnO顆粒可成長出單晶銳鈦礦二氧化鈦奈米線。此外,也更進一步探討利用此種SnO催化劑於各種濺鍍條件下的影響。本研究結果利用掃描式電子顯微鏡(SEM)觀察二氧化鈦奈米線之形貌,其微結構方面使用穿透式電子顯微鏡(TEM)、低掠角入射X光繞射儀(GIXD)及X光吸收近邊緣結構(XANES)光譜進行分析,其化學成份分析則經由X光電子能譜儀(XPS)及二次離子質譜儀(SIMS)加以量測,並以陰極螢光光譜儀(CL)測定其發光特性。最後,本研究由TEM和SIMS分析結果證明所合成的單晶銳鈦礦二氧化鈦奈米線其成長機制為氣-固-固(vapor-solid-solid)機制及包圍成長模式(folded-growth mode).

    Single-crystalline anatase TiO2 nanowires have been synthesized using a novel method in this research, which involves the use of appropriate catalysts and an RF magnetron sputter deposition technique. The preparation and catalysts and the sputter deposition were all performed at room temperature. Different catalyst precursors and different procedures were used for the preparation of the catalysts, which were grouped into 8 different types. Catalyst-seeded substrates were placed in an RF magnetron sputter deposition chamber for the deposition of TiO2. Investigations of the 8 types of catalysts show that spherical SnO particles lead to the formation of single-crystalline anatase TiO2 nanowires. Effects of various sputter deposition conditions were then investigated using the SnO catalyst. The morphologies of the obtained TiO2 nanowires were characterized using scanning electron microscopy. The microstructures were investigated by transmission electron microscopy (TEM), grazing incident X-ray diffraction, X-ray absorption near-edge structures spectroscopy. The chemical compositions were analyzed using X-ray photoelectron spectra analysis and secondary ion mass spectrometry (SIMS). The luminescence property was examined using cathodolumnescience spectroscopy. TEM and SIMS analysis show that the growth of single-crystalline anatase TiO2 nanowires follows the vapor-solid-solid mechanism, which results in a folded-growth of nanowires.

    Chinese Abstract/中文摘要 I English Abstract II Acknowledgment/誌謝 III Contents IV A List of Tables VII A List of Figures VIII Chapter 1. Introduction 1 1.1 Preface 1 1.2 Motivation and Objective 4 Chapter 2. Literature Review 7 2.1 Crystal structures and Properties of Titanium Dioxide 7 2.2 Photoinduced Process and Applications of Titanium Dioxide 11 2.2.1 Photoinduced Process 11 2.2.2 Photocatalysis 12 2.2.3 Dye-Sensitized Solar Cells (DSSC) 17 2.3 Synthesis of One-Dimensional Titanium Dioxide Nanomaterials 25 2.3.1 Template-Assisted Synthesis 25 2.3.2 Direct Oxidation Method 28 2.3.3 Physical Vapor Deposition 30 2.3.4 Hydrothermal Method 31 2.3.5 Solvothermal Method 37 2.4 Growth Mechanism of One-Dimensional Nanostructures 39 2.4.1 Vapor-Liquid-Solid (VLS) Growth 41 2.4.2 Vapor-Solid (VS) Growth 43 2.4.3 Oxide-Assisted Growth 45 2.4.4 Solution-Liquid-Solid (SLS) Growth 47 2.5 Fundamentals of Sputter Deposition 49 2.5.1 Plasma and Glow Discharge 49 2.5.2 Principle of Sputter Deposition 51 2.5.3 RF Magnetron Sputter Deposition 53 2.5.4 Thin Film Growth 56 Chapter 3. Experimental 60 3.1 General Experimental Procedures 60 3.1.1 Substrate Cleaning 61 3.1.2 Catalyst Deposition 62 3.1.3 Sputter Deposition System 63 3.2 Characterization Techniques 66 3.2.1 Scanning Electron Microscopy (SEM) 66 3.2.2 Transmission Electron Microscopy (TEM) 69 3.2.3 Grazing Incident X-ray Diffraction (GIXD) 70 3.2.4 X-ray Absorption Near-Edge Structure (XANES) 72 3.2.5 X-ray Photoelectron Spectroscopy (XPS) 74 3.2.6 Cathodoluminescence (CL) 76 3.2.7 Secondary Ion Mass Spectrometry (SIMS) 77 Chapter 4. Results and Discussion 78 4.1 Catalyst Deposition and Characterizations 78 4.1.1 SEM and EDX Analysis 78 4.1.2 TEM, GIXD and XPS Analysis 84 4.2 Effects of Type 1 Catalyst Characteristics on the Growth of TiO2 91 4.2.1 pH Values Effects 91 4.2.2 Dip Coating Time Effects 99 4.3 Different Catalyst Precursors for the Growth of TiO2 101 4.3.1 Types 2 to 7 Catalysts 101 4.3.2 Type 8 Catalyst 109 4.4 Growth of TiO2 under Different Sputtering Conditions 117 4.4.1 Effects of RF Power 117 4.4.2 Effects of Working Pressure 122 4.4.3 Effects of Deposition Time 131 4.4.4 Effects of Different Substrate 135 4.4.5 Effects of Gas Compositions 137 4.5 Growth Mechanism of the Sputter-Deposited TiO2 Nanowires 181 Chapter 5. Conclusions 184 Chapter 6. Future Work 185 References 186 Appendix A 196 Resume 205

    [1] C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications, Academic Press, Boston, 1991.
    [2] A.A. Rempel, Russ. Chem. Rev. 76 (2007) 435.
    [3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 15 (2003) 353.
    [4] S. Iijima, Nature 354 (1991) 56.
    [5] N. Negishi, K. Takeuchi and T. Ibusuki, Appl. Surf. Sci. 121-122 (1997) 417.
    [6] B. O'Regan and M. Grtzel, Nature 353 (1991) 737.
    [7] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc. 126 (2004) 14943.
    [8] M. Drr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nat. Mater. 4 (2005) 607.
    [9] C.H. Lu, W.H. Wu and R.B. Kale, J. Hazard. Mater. 147 (2007) 213.
    [10] A.Y. Nosaka, J. Nishino, T. Fujiwara, T. Ikegami, H. Yagi, H. Akutsu and Y. Nosaka, J. Phys. Chem. B 110 (2006) 8380.
    [11] J. Yu, L. Zhang, B. Cheng and Y. Su, J. Phys. Chem. C 111 (2007) 10582.
    [12] K.R. Meier and M. Grtzel, ChemPhysChem 3 (2002) 371.
    [13] S. Bakardjieva, V. Stengl, L. Szatmary, J. Subrt, J. Lukac, N. Murafa, D. Niznansky, K. Cizek, J. Jirkovsky and N. Petrova, J. Mater. Chem. 16 (2006) 1709.
    [14] S.H. Lim, J. Luo, Z. Zhong, W. Ji and J. Lin, Inorg. Chem. 44 (2005) 4124.
    [15] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P.D. Yang, Nat. Mater. 4 (2005) 455.
    [16] Y. Yu and D. Xu, Appl. Catal. B: Environ. 73 (2007) 166.
    [17] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y.W. Zhu, H.Z. Zhang and D.P. Yu, J. Phys. D: Appl. Phys. 38 (2005) 1152.
    [18] J.M. Wu, W.T. Wu and H.C. Shih, J. Electrochem. Soc. 152 (2005) G613.
    [19] J.M. Wu, H.C. Shih and W.T. Wu, Nanotechnology 17 (2006) 105.
    [20] B.M. Wen, C.Y. Liu and Y. Liu, New J. Chem. 29 (2005) 969.
    [21] Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang and L.D. Zhang, Chem. Phys. Lett. 365 (2002) 300.
    [22] U. Diebold, Surf. Sci. Rep. 48 (2003) 53.
    [23] Carp, C.L. Huisman and A. Reller, Prog. Solid State Chem. 32 (2004) 33.
    [24] J. Ovenstone and K. Yanagisawa, Chem. Mater. 11 (1999) 2770.
    [25] Fujishima and K. Honda, Nature 238 (1972) 37.
    [26] C. Aprile, A. Corma and H. Garcia, Phys. Chem. Chem. Phys. 10 (2008) 769.
    [27] M. Grtzel, Nature 414 (2001) 338.
    [28] Mills and S.L. Hunte, J. Photochem. Photobiol. A: Chem. 108 (1997) 1.
    [29] Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobio. C: Photochem. Rev. 1 (2000) 1.
    [30] X. Chen and S.S. Mao, Chem. Rev. 107 (2007) 2891.
    [31] L. Saadoun, J.A. Ayllon, J. Jimenez-Becerril, J. Peral, X. Domenech and R. Rodriguez-Clemente, Appl. Catal. B: Environ. 21 (1999) 269.
    [32] D.W. Bahnemann, S.N. Kholuiskaya, R. Dillert, A.I. Kulak and A.I. Kokorin, Appl. Catal. B: Environ. 36 (2002) 161.
    [33] A.L. Linsbigler, G. Lu, J.T. Yates and Jr., Chem. Rev. 95 (1995) 735.
    [34] C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout and J.L. Gole, Nano Lett. 3 (2003) 1049.
    [35] J.L. Gole, J.T. Stout, C. Burda, Y. Lou and X. Chen, J. Phys. Chem. B. 108 (2004) 1230.
    [36] X. Chen, Y. Lou, A.C.S. Samia, C. Burda and J.L. Gole, Adv. Funct. Mater. 15 (2005) 41.
    [37] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 261 (1976) 402.
    [38] J.R. Durrant and S.A. Haque, Nat. Mater. 2 (2003) 362.
    [39] M. Grtzel, Inorg. Chem. 44 (2005) 6841.
    [40] M. Grtzel, J. Photo. Photobio. C: Photochem. Rev. 4 (2003) 145.
    [41] M. Grtzel, Prog. Photovolt: Res. Appl. 14 (2006) 429.
    [42] G.P. Smestad and M. Grtzel, J. Chem. Edu. 75 (1998) 752.
    [43] T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H.V. Ryswyk and J.T. Hupp, Energ. Environ. Sci. 1 (2008) 66.
    [44] J.B. Baxter, A. Walker, K. Ommering and E. Aydil, Nanotechnology 17 (2006) S304.
    [45] J. van de Lagemaat and A.J. Frank, J. Phys. Chem. B 105 (2001) 11194.
    [46] L. Dloczik, O. lleperuma, I. Lauermann, L.M. Peter, E.A. Ponnomarev, G. Redmond, N.J. Shaw and I. Uhlendorf, J. Phys. Chem. B 101 (1997) 10281.
    [47] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, J. Phys. Chem. B 106 (2002) 10004.
    [48] J.B. Baxter and E.S. Aydil, Appl. Phys. Lett. 86 (2005) 053114.
    [49] K. Zhu, N.R. Neale, A. Miedaner and A.J. Frank, Nano Lett. 7 (2007) 69.
    [50] Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S.Yoshikawa, Cent. Eur. Jour. Chem. 4(3) (2006) 476.
    [51] K. Asagoe, S. Ngamsinlapasathian, Y. Suzuki and S. Yoshikawa, Cent. Eur. Jour. Chem. 5(2) (2007) 605.
    [52] K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian and S. Yoshikawa, J. Phys. Conf. Ser. 61 (2007) 1112.
    [53] J.E. Boercker, E. Enache-Pommer and E.S. Aydil, Nanotechnology 19 (2008) 095604.
    [54] J. Jiu, S. Isoda, F. Wang and M. Adachi, J. Phys. Chem. B 110 (2006) 2087.
    [55] B. Tan and Y. Wu, J. Phys. Chem. B 110 (2006) 15932.
    [56] Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang, Appl. Phys. Lett. 78 (2001) 1125.
    [57] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao and Y. Tang, Nano Lett. 2 (2002) 717.
    [58] S. Liu and K. Huang, Sol. Energy Mater. Sol. Cells 85 (2005) 125.
    [59] J.M. Wu, J. Cryst. Growth 269 (2004) 347.
    [60] X. Peng and A. Chen, J. Mater. Chem. 14 (2004) 2542.
    [61] J.M. Wu, H.C. Shih and W.T. Wu, Chem. Phys. Lett. 413 (2005) 490.
    [62] H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. 7(4) (1995) 663.
    [63] T. Kasuga, M. Hiramatsu. A. Hoson, T. Sekino and K. Niihara, Langmuir 14 (1998) 3160.
    [64] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 1307.
    [65] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan and L.M. Peng, Appl. Phys. Lett. 79 (2001) 3702.
    [66] Q. Chen, W. Zhou, G. Du and L.M. Peng, Adv. Mater. 14 (2002) 1208.
    [67] Q. Chen, G.H. Du, S. Zhang and L.M. Peng, Acta Cryst. B 58 (2002) 587.
    [68] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang, Dalton Trans. 1 (2003) 3898.
    [69] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang and N. Wang, Appl. Phys. Lett. 82 (2003) 281.
    [70] W. Wang, O.K. Varghese, M. Paulose and C.A. Grimes, J. Mater. Res. 19 (2004) 417.
    [71] R. Yoshida, Y. Suzuki and S. Yoshikawa, J. Sol. Stat. Chem. 178 (2005) 2179.
    [72] B.M. Wen, C.Y. Liu and Y. Liu, Chem. Lett. 34 (2005) 396.
    [73] K.W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 10 (2006) 182.
    [74] R.S. Wanger and W.C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
    [75] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero and G. Sberveglieri, Prog. Mater. Sci. 54 (2009) 1.
    [76] J.K. Jian, C. Wang, Z.H. Zhang, X.L. Chen, L.H. Xu and T.M. Wang, Mater. Lett. 60 (2006) 3809.
    [77] J. Hu, T.W. Odom and C.M. Lieber, Acc. Chem. Res. 32 (1999) 435.
    [78] G.W. Sears, Acta Met. 4 (1955) 361.
    [79] Y. Zhang, H. Jia, X. Luo, X. Chen, D. Yu and R. Wang, J. Phys. Chem. B 107 (2003) 8289.
    [80] N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee and S.T. Lee, Phys. Rev. B 58 (1998) R16024.
    [81] S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello and C.S. Lee, J. Mater. Res. 14 (1999) 4503.
    [82] R.Q .Zhang, Y. Lifshitz and S.T. Lee, Adv. Mater. 15 (2003) 635.
    [83] N. Wang, Y. Cai and R.Q. Zhang, Mater. Sci. Eng. R 60 (2008) 1.
    [84] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu and W.E. Buhro, Inorg .Chem. 45 (2006) 7511.
    [85] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons and W.E. Buhro, Science 270 (1995) 1791.
    [86] Langmuir, Phys. Rev. 33 (1929) 954.
    [87] Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, Spectrochim. Acta Part B 57 (2002) 609.
    [88] W.R. Grove, Phil. Trans. Roy. Soc. London 5 (1852) 87.
    [89] K. Wasa, Bull. Mater. Sci. 16 (1993) 643.
    [90] S. Berg and I.V. Katardjiev, J. Vac. Sci. Technol. A 17 (1999) 1916.
    [91] M. Ohring, The Materials Science of Thin Films, Academic Press, 1992.
    [92] J.A. Thornton, Ann. Rev. Mater. Sci. 7 (1997) 239.
    [93] S.L. Flegler, J.W. Heckman Jr and K.L. Klomparens, Scanning and Transmission Electron Microscopy: An Introduction, Oxford University Press, New York, 1993.
    [94] D.B. Willams and C.B. Carter, Transmission Electron Microscopy-Basic Diffraction Imaging Spectroscopy, Plenum Press, New York, 1994.
    [95] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Massachusetts, 1978.
    [96] D.C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Wiley-Interscience, New York, 1988.
    [97] J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons, New York, 2003.
    [98] B.G. Yacobi and D.B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York, 1990.
    [99] G. Gillen, R. Lareau, J. Bennet and F. Stevie, Secondary Ion Mass Spectroscopy SIMS XI, Wiley, Chichester, 1998.
    [100] H. Uchiyama, H. Ohgi and H. Imai, Cryst. Growth Des. 6 (2006) 2186.
    [101] M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik and J. Szuber, Thin Solid Films 490 (2005) 36.
    [102] J.L. Huang, Y.T. Jah, B.S. Yau, C.Y. Chen and H.H. Lu, Thin Solid Films 370 (2000) 33.
    [103] R.X .Wang, C.D. Beling, A.B. Djurisic, S. Li and S. Fung, Semicond. Sci. Technol. 19 (2004) 695.
    [104] K. Kuramochi, T. Yamazaki, N. Nakanishi, I. Hashimoto and K. Watanbe, Phys. Stat. Sol. A 205 (2008) 1602.
    [105] Y. Shen, H. Yu, J. Yao, S. Shao, Z. Fan, H. He and J. Shao, Opt. Laser Technol. 40 (2008) 550.
    [106] S. Petigny, H. Mostefa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn and S. Bourgeois, Surf. Sci. 410 (1998) 250.
    [107] B.O. Aronsson, J. Lausmaa and B. Kasemo, J. Biomed. Mater. Res. 35 (1997) 49.
    [108] S.J. Stewart, M. Fernandez-Garcia, C. Belver, B.S. Mun and F.G. Requejo, J. Phys. Chem .B 110 (2006) 16482.
    [109] V.S. Lusvardi, M.A. Barteau, J.G. Chen, J. Eng, Jr. , B. Fruhberger and A. Teplyakov, Surf. Sci. 397 (1998) 237.
    [110] F.M.F. de Groot, J.C. Fuggle, B.T. Thole and G.A. Sawatzky, Phys. Rev. B 41 (1990) 928.
    [111] Y. Kim, B.J. Yoo, R. Vittal, Y. Lee, N.G. Park and K.J. Kim, J. Power Sources 175 (2008) 914.
    [112] F.M.F. de Groot, J. Faber, J.J.M. Michiels, M.T. Czyzyk, M. Abbate and J.C. Fugle, Phys. Rev. B 48 (1993) 2074.
    [113] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293 (2001) 269.
    [114] B. Liu, L. Wen and X. Zhao, Sol. Energ. Mater. Sol. Cell 92 (2008) 1.
    [115] C.M. Huang, L.C. Chen, K.W. Cheng and G.T. Pan, J. Mol. Catal. Chem. 261 (2007) 218.
    [116] T. Takagahara and K. Takeda, Phys. Rev. B 46 (1992) 15578.
    [117] L.V. Saraf, S.I. Patil, S.B. Ogale, S.R. Sainkar and S.T. Kshirsager, Int. J. Mod. Phys. B 12 (1998) 2635.
    [118] N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem. 99 (1995) 16646.
    [119] I. Fernndez, A. Cremades and J. Piqueras, Semicond. Sci. Technol. 20 (2005) 239.
    [120] J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea and L.J. Lauhon, J. Mater. Chem. 19 (2009) 849.
    [121] L.C. Campos, M. Tonezzer, A.S. Ferlauto, V. Grillo, R. Magalhaes-Paniago, S. Oliveira, L.O. Ladeira and R.G. Lacerda, Adv. Mater. 20 (2008) 1499.
    [122] S.L. Wang, Y.H. He, J. Zou, Y. Wang, H. Huang, B.Y. Huang, C.T. Liu and P.K. Liaw, Nanotechnology 19 (2008) 345604.
    [123] D.C. Lee and B.A. Korgel, Mol. Simulat. 31 (2005) 637.

    下載圖示 校內:2019-07-27公開
    校外:2019-07-27公開
    QR CODE