| 研究生: |
郭俊志 Kuo, Chun-Chin |
|---|---|
| 論文名稱: |
砂岩與壓克力複合型裂紋擴展機制之研究 The Study of Crack Propagation of Sandstones and PMMA under Mixed Fracture Modes |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 裂紋擴展速度 、斷裂韌度 、裂紋 |
| 外文關鍵詞: | fracture toughness, crack, velocity of crack growth |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對砂岩石材及 PMMA 板材切割成矩形塊試體,以單軸抗壓實驗求取砂岩及PMMA 板材在不同預製裂縫角度之斷裂韌度及破壞機制,在試驗過程中使用裂紋量測系統量測裂紋擴展速度。本研究並以有限元素法軟體ABAQUS 驗證不同角度下應力強度因子的計算結果,將其數值解與解析解結果進行比較。
研究結果顯示:(1)在兩種材料裂紋擴展形式中可發現在加壓過程中試體先有翼裂紋及反翼裂紋擴展,而後才有次生裂紋的產生。(2)砂岩試體預製裂縫角度越大,最大應力隨之增大;裂紋擴展角則越小;裂紋擴展速度越快,破壞機制為KI 與KII 之複合形式破壞。(3)PMMA 試體預製裂縫角度越大,最大應力值無明顯變化;裂紋擴展角則越大;裂紋擴展速度越慢,破壞機制為KI 與KII 之複合形式破壞。(4)以ABAQUS 軟體模擬預製複合型裂紋施加荷重之單軸抗壓試驗,所得之斷裂韌度數值解與Kitagawa 所得之解比較結果部份,誤差在4.35%之內。
This study proposes to observe the fracture propagation in a plate sample containing an inclined crack under a uniaxial compression test. Two different
materials: sandstone and PMMA, were investigated. A crack measuring system was also deployed to measure the velocity of crack growth. A finite element package, ABAQUS, was used in this study to calculate the fracture toughness of the cracked samples.
The findings of this study are: (1) On the observation of the crack growth of the sample, the wing crack is formed first and then followed by the anti-wing crack. (2) For sandstone samples, higher pre-crack angles lead to
higher ultimate stress, lower angle of crack growth and higher velocity of crack growth. The mixed mode of fracture, KI and KII , is observed in the test. (3) For PMMA samples, higher pre-crack angles do not significantly affect the ultimate stress while higher angles of crack growth lead to lower velocity of crack growth. The mixed mode of fracture, KI and KII, is observed in the test. (4) Numerical results of fracture toughness obtained from ABAQUS are compared with Kitegawa’s solutions. The discrepency between the numerical solutions and Kitegawa’s solutions is under 4.35 %.
1.朱維申、陳衛忠、申普,”雁行裂紋擴展的模型試驗及斷裂力學機制研究”,固體力學學報,1998。
2.陳衛忠、李術才、朱維申、邱祥波,”岩石裂紋擴展的實驗與數值分析研究”,岩石力學與工程學報,2003。
3.黃明利、黃凱珠,”三維表面裂紋相互作用擴展貫通機制試驗研究”,岩石力學與工程學報,2007。
4.朱萬成、唐春安,”岩板中混合裂紋擴展過程的數值模擬”,岩土工程學報,2000。
5.郭彥双、黃凱珠、朱維申、周錦添、李術才,”輝長岩中張開型表面裂隙破裂模式研究”,岩石力學與工程學報,2007。
6.謝其泰、王建力,”石材裂紋擴展分型特性”,岩石力學與工程學報,2007。
7.愛發股份有限公司,”ABAQUS實務入門引導”,全華圖書股份有限公司,台北市,2007。
8.劉展,”ABAQUS6.6基礎教程與實例詳解”,中國水利水電出版社,北京市,2008。
9.鄧屬予,”台灣的沉積岩”,經濟部中央地質調查所,台北縣,1997。
10.Klien C., “礦物學”,地球科學文教基金會,台北市,2000。
11.Bobet A., ” The initiation of secondary cracks in compress,”Engineering Fracture Mechanics,Vol.66,pp.187-219,2000.
12.Dyskin A. V., Sahouryeh E., Jewell R. J., Joer H.,Ustinov K. B., ”Influence of shape and locations of initial 3-D crack on their growth in uniaxial compression , ”engineering Fracture Mechanics, Vol.70, pp.2115-2136, 2003.
13.Li Y. P., Chen L. Z., Wang Y. H., ”Experimental research on pre-cracked marble under compression ,” International Journal of Solids and Structures,Vol.42, pp. 2505–2516, 2005.
14.Murakami Y., ”Stress intensity factors handbook, Vol.2,” 1987.
15.Sagong M., Bobet A., ”Coalescence of multiple flaws in a rock-model material in uniaxial compression,” International journal of Rock Mechanics & Mining Sciences, Vol.39, pp.229-241, 2002.
16.Tang C. A., Lin P., Wong R. H. C., Chau K. T. ”Analysis of crack coalescence in rock-like materials containing three flaws-Part II: experimental approach ,”International Journal of Rock Mechanics & Mining Sciences, Vol.38, pp.925-939, 2001.
17.Wong R.H.C., Chau K.T., Tang C.A., P. Lin, ”Analysis
of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach , ”International Journal of Rock Mechanics & Mining Sciences, Vol.38, pp. 909–924, 2001.
18.Yang S. Q., Jiang Y. Z., Xu W. Y., Chen X. Q., ”Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression,” International Journal of Solids and Structures , Vol.45, pp.4796-4819, 2008.