| 研究生: |
蘇瑩瑩 Su, Ying-Ying |
|---|---|
| 論文名稱: |
隨機團體需求之訂位限制 Booking Limit for Stochastic Group Demand in Railway |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 隨機團體需求 、訂位限制 、基因演算法 、蒙地卡羅模擬法 |
| 外文關鍵詞: | Stochastic demand, Booking limit, Genetic algorithm, Monte Carlo simulation |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討軌道運輸業團體旅客的訂位系統決策模式,軌道運輸的列車座位容量有限,團體旅客由於訂位需求提早出現、訂位人數具規模、團體票價優惠等特性與單人旅客不同,不可將相同旅次區間的單人旅客與團體旅客視為同質,因此,將團體旅客與單人旅客接受模式分開計算。
考量團體旅客需求隨機特性,結合蒙地卡羅模擬法模擬隨機團體需求,並運用基因演算法求解軌道系統O-D團體訂位數量限制,利用各O-D團體訂位數量限制保護高價值的團體旅客能被接受,此訂位數量可提供營運人員在售票時參考,取代過去以人工經驗判斷是否接受團體的模式。
本研究修改目前臺灣高鐵接受團體旅客需求的流程,加入各O-D訂位數量限制之考量,透過隨機需求模擬旅客訂位情況以驗證本研究模式,並比較兩者之期望收益,本研究結果發現,在O-D訂位數量的保護下,模式接受的團體組合不同,並且一般列車較高鐵模式增加了2%的團體收益。
According to the different characteristics of group passenger in railway industry, this study would like to investigate the passenger reservation system to improve the revenue of group passenger. We formulate a model to determine whether accept or reject the requisition of group passenger and replace the judgment of human-experienced. The paper proposes a method for solving stochastic group demand seat inventory control problems using a hybrid of a genetic algorithm in uncertain environments and the Monte Carlo simulation method. Computation results are analyzed by applying the model to a real-world Taiwan railway system. Analytical results demonstrate that a proper adjustment of the reservation system and accurate booking limit for each O-D pairs improves the revenue of group passenger by 2% for each train.
1. Abe, I. (2007). Revenue management in the railway industry in Japan and Portuga:A stakeholder approach, Master of science in technology and policy, Massachusetts Institute of Technology.
2. Aghaee, M. P. and Khedmatlo, S. (2011). Designing a dynamic revenue management model(Case study on railway passenger transportation). Transportation Research Journal, 1(1), pp.61~74.
3. Akartunali, K., Boland, N., Evans, I., Wallace, M., and Waterer, H. (2013). Airline planning benchmark problems—Part I:Characterising networks and demand using limited data. Computers and Operations Research, 40, pp.775~792.
4. Akartunali, K., Boland, N., Evans, I., Wallace, M., and Waterer, H. (2013). Airline planning benchmark problems—Part II:Passenger groups, utility and demand allocation. Computers and Operations Research, 40, pp.793~804.
5. Armstrong, A. and Meissner, J. (2010). Railway revenue management:Overview and models. Working Paper, The Department of Management Science Lancaster University Management School, UK.
6. Belobaba, P. P. (1987), Airline yield management:An overview of seat inventory control. Transportation Science, 21, pp.63~73.
7. Bertsimas, D. and Boer, S. D. (2005), Simulation-Based Booking Limits for Airline Revenue Management. Operations Researc ,53(1), pp. 90~106.
8. Bharill, N. R. (2008), Revenue management in railway operations:A study of the Rajdhani Express, Indian railways Rajdhani Express, Indian railways. Transportation Research Part : Policy and Practice, 42(9), pp.1195~1207.
9. Bitran, G. R. and Mondschein, S. V. (1995), An application of yield management to the hotel industry considering multiple day stays. Operations Research, 43(3), pp.427~443.
10. Bodily, S. E., and Pfeifer, P. E. (1992), Overbooking decision rules. Omega, 20(1), pp.129~133.
11. Brumelle, S. L., Mcgill, J. I. (1993), Airline seat allocation with multiple nested fare classes. Operation Research, 41, pp.1363~1386.
12. Chambers, L. (1995), Practical handbook of genetic algorithms:Applications. CRC Press, Boca Raton, FL.
13. Ciancimino, A., Inzerillo, G., Lucidi, S., and Palagi, L.(1999), A mathematical programming approach for the solution of the railway yield management problem. Transportation Science, 33(2), pp.168~181.
14. Clausen, T., Hjorth, A. N., Nielsen, M., and Pisinger, D.(2010), The off-line group seat reservation problem. European Journal of Operational Research, 207, pp. 1244~1253.
15. Curry, R. E. (1990) Optimal airline seat allocation with fare classes nested by origins and destinations. Transportation Science, 24, pp.193~204.
16. Dror, M., Trudeau, P., and Ladany, S. P. (1988) Network models for seat allocation on flights. Transportation Research Part B, 22(4), pp.239~250.
17. De Boer, S. V., Freling, R. and Piersma, N. (2002), Mathematical programming for network revenue management revisited. European Journal of Operational Research, 137, pp. 72~92.
18. Fintel, J. (1990), Gold among the silver. Restaurants USA, 10(3), pp.17~22.
19. Gillen, D. and Hasheminia, H. (2013), Estimating the demand responses for different sizes of air passenger groups. Transportation Research Part B, 49, pp.24~38.
20. Goldberg, E. D., (1999), Genetic algorithms in search optimization and machine learning. Addison-Wesley, Reading, MA.
21. Guadix, J., Cortés, P., Onieva, L., and Muñuzuri, J. (2010), Technology revenue management system for customer groups in hotels. Journal of Business Research, 63, pp. 519~527.
22. Guerriero, F., Miglionico, G. and Olivito, F. (2014), Strategic and operational decisions in restaurant revenue management. European Journal of Operational Research, 237(3), pp.1119~1132.
23. Hood, ISA. (2000), MERLIN: Model to evaluate revenue and loading for intercity. (2nd ed.), Yield Management:Strategies for the Service Industries, Thomson London, pp.98~110.
24. Kall, P. and Wallace, S. W. (1994), Stochastic programming(2nd ed.).
25. Kimes, S. E. (1989), Yield management:A tool for capacity-constrained service firms. Journal of Operations Management, 8(4), pp.348~363.
26. Kimes, S. E. (2000), A strategic approach to yield management. In:Ingold A, McMahon-Beattie U, Yeoman I, editors. pp.3~14.
27. Kraft, E. R., Srikar, B. N. and Phillips, R. L. (2000), Revenue management in railroad applications. Transportation Quarterly, 54(1), pp.157~176.
28. Kuah, C. T. , Wong, K. W., and Wong, W. P. (2012), Monte carlo data envelopment analysis with genetic algorithm for knowledge management performance measurement. Expert Systems with Applications, 39, pp.9348~9358.
29. Littlewood, K. (1972), Forecasting and control of passengers booking. AFIFORS SYMP., PROC, pp.95~117.
30. Liu, Z. Y., (2011), Probit-based stochastic user equilibrium and their applications in congestion pricing., Ph.D. Thesis, National University Singapore.
31. Liu, Z. Y., Meng, Q. (2013), Distributed computing approaches for large-scale probit-based stochastic user equilibrium problem. Journal of Advanced Transportation, 47(6), pp.553~571.
32. Liu, Z. Y., Meng, Q, Wang, S. (2013), Speed-based toll design for cordon-based congestion pricing scheme. Transportation Research Part C, 31 , pp.83~98.
33. Mcgill, J. I. and Van Ryzin, G. J. (1999), Revenue management:research overview and prospects. Transportation Science, 33(2), pp.233~256.
34. Modarres, M. and Sharifyazdi, M. (2009), Revenue management approach to stochastic capacity allocation problem. European Journal of Operational Research, 192, pp. 442~459.
35. Netessine, S. and Shumsky, R. (2003), Introdution to the theory and practice of yield management. INFORMS Transportation on Education, 3(1), pp.34~44.
36. Obeng, K. and Sakano, R. (2012), Airline fare and seat management strategies with demand dependency. Journal of Air Transport Management, 24, pp.42~48.
37. Pak, K. and Piersma, N. (2002), Overview of OR techniques of airline revenue management. Statistica Neerlandica, 56(4), pp.479~495.
38. Rosenfeld, J. (1986), Demographics on vacation. American Demographics, 8(1), pp.38~41.
39. Schwartz, Z., Stewart, W. and Backlund, E. A. (2012), Visitation at capacity-constrained tourism destinations:Exploring revenue management at a national park. Tourism Management, 33, pp.500~508.
40. Sibdari, S., Lin, K. Y. and Chellapan, S. (2008), Multiproduct revenue management: An empirical study of Auto Train at Amtrak. Journal of Revenue and Pricing Management, 7(2), pp.172~184.
41. Smith, B. C., Leimkuhler, J. F. and Darrow, R. M.(1992), Yield Management at American Airlines. Interfaces, 22(1), pp.8~31.
42. Svrcek, T. (1991) Modeling airline group passenger demand for revenue optimization, Massachusetts Institute of Technology, M.I.T. Libraries Theses Collection.
43. Talluri, K. T. and Van Ryzin, G. J. (2004) The Theory and Practice of Revenue Management, Kluwer.
44. Tsai, T. H. (2014), A self-learning advanced booking model for railway arrival forecasting. Transportation Research Part C, 39, pp.80~93.
45. Wang, X. and Wang, F. (2007), Dynamic network yield management., Transportation Research Part B, 41, pp.410~425.
46. Weatherford, L. R., and Bodily, S. E. (1992), A taxonomy and research overview of perishable-asset revenue management:yield management, overbooking, and pricing. Operations Research, 40(5), pp.831~844.
47. Williamson, E. L. (1992) Airline network seat inventory control:Methodologies and revenue impacts., Massachusetts Institute of Technology, M.I.T.Libraries Theses Collection.
48. Wong, J. T., Koppelman, F. S., and Daskin, M. S. (1993) Flexible assignment approach to itinerary seat allocation. Transportation Research Part B, 27B(1), pp.33~48.
49. Yoshitomi, Y. and Yamaguchi, R. (2003), A genetic algorithm and the Monte Carlo method for stochastic job-shop scheduling. International Transportations In Operational Research, 10, pp.577~596.
50. You, P. S. (2008), An efficient computational approach for railway booking problems. European Journal of Operational Research, 185(5), pp. 811~824.
51. 陳嘉珮,「運用基因演算法及最佳化資源分配法求解隨機需求之長期車輛問題」,國立交通大學運輸科技與管理研究所碩士論文,民國一百年。
校內:2019-08-07公開