簡易檢索 / 詳目顯示

研究生: 尹卡羅
Darma, Yeddid Yonatan Eka
論文名稱: Darrieus葉片於洋流發電之模擬與設計應用
Simulation, Design and Realization of Darrieus Turbine for Current Energy Conversion
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 107
中文關鍵詞: 海洋流Darrieus 葉片CFD 模擬
外文關鍵詞: Marine Current Energy, Darrieus Turbine, CFD Simulation
相關次數: 點閱:139下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要乃探討Darrieus葉片於未來洋流發電之分析與設計應用。首先,為求了解不同類型的葉片特性差異,本文比較了NACA 0025型式中的H-Darrieus設計與變形之Darrieus葉片,亦即具備歪斜角之葉片設計。本文採用有限元素法探討其力學特性,並利用流體動力模擬軟體(Computational Fluid Dynamics,或稱CFD)比較不同葉片間的設計參數對其特性之影響,以模擬不同葉片設計所具備的潛在輸出功率。
    為驗證模擬之準確性與可靠度,本文利用一等比例縮小之葉片模型透過實驗加以比較,並且根據實驗結果選用合適發電機,以達系統之有效匹配。
    綜言之,本文輔以CFD所模擬設計之縮小變形Darrieus葉片原型,考量歪斜角(skew angle)、扭轉角(twist angle)及葉面彎曲(bending)設計因素,後經實驗證實其特性吻合設計目標。

    The work described in this thesis is the analysis and design of a Darrieus water turbine for the future generation of marine current energy. Comparison of two different types of turbines is the first task of this thesis so that the characteristics of each turbine can be obtained. To perform the study, an H-Darrieus turbine with basic design (NACA 0025) and a skewed Darrieus turbine are chosen. The analysis is based on finite element method to predict the behavior of the turbines. By using computational fluid dynamics (CFD) analysis, different parameters of the turbines are discussed, the power output of the turbine are also calculated from the simulation. The performance of these turbines is found to be size dependent. To validate the simulation, a small scale skewed Darrieus turbine is used as the prototype and the behavior of this turbine is tested using a circulation tank. The experiment verifies that reliability of the CFD simulation presented in this thesis. According the simulation result, a generator can then be selected to produce the electrical energy.
    To sum up, the investigated turbine parameters and designs presented in this thesis include the skew angle, twist angle and bending. The effect of these parameters is discussed. The turbine design is verified by both the CFD simulation and experiments.

    中文摘要 II ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VI LIST OF TABLES IX LIST OF FIGURES X NOMENCLATURE XV CHAPTER I INTRODUCTION 1 1.1 The Reason Behind Renewable Energy Development 1 1.2 Marine Current Energy 3 1.3 The Reason Behind Marine Current Energy Development in Taiwan 8 1.4 Turbine Concept 9 1.5 Scope of the Thesis 11 CHAPTER II OVERVIEW OF OCEAN ENERGY DEVICES 13 2.1 Ocean Tides Device 13 2.1.1 Tides Device in France 13 2.1.2 Tides Device in Canada 14 2.1.3 Tides Device in Korea 14 2.1.4 Tides Device in Australia 15 2.2 Ocean Wave Devices 16 2.2.1 OWC (Oscillating Water Column) 17 2.2.2 Absorber System 17 2.2.3 Overtopping Device 19 2.2.4 Inverted Pendulum Device 20 2.3 Marine Current Device 21 2.3.1 Current Status of Marine Current Energy Devices 23 2.4 Temperature Gradient Device 24 2.5 Salinity Gradient Device 26 2.6 Study of Vertical Axis Water Turbine 27 CHAPTER III THEORY OF DARRIEUS TURBINE AND CONCEPT DESIGN OF DARRIEUS TURBINE EXPERIMENT 31 3.1 Theory of Darrieus Turbine 31 3.2 Design of Darrieus Turbine and Experiment 39 CHAPTER IV VERIFICATION AND SIMULATION OF DARRIEUS TURBINE 42 4.1 Verification of Darrieus Turbine Simulation 42 4.1.1 Verification between Simulation and Specification 47 4.1.2 Verification of Characteristic Result between Simulation Result and Experiment Data 49 4.2 Best Choice of Turbine Diameter for H-Darrieus and Twisted H-Darrieus Turbine 53 4.3 Comparing Turbine Efficiency Between H-Darrieus & Twisted H-Darrieus Turbine 54 4.4 Small Scale Simulation of Twisted H-darrieus Turbine Turbine 62 4.4.1 Simulation of 0.4 Meter of Diameter to 0.8 Meter of Diameter 63 4.5 The Pressure Effect Into Self Rotating Phenomena 74 4.6 Selected Generator Characteristic 80 CHAPTER V EXPERIMENT RESULT 86 5.1 Experimental Preparation 86 5.2 Circulating Tank Experimental Result and Analysis 88 5.3 Laboratory Experimental Result and Analysis 91 CONCLUSION 96 FUTURE WORK 98 REFERENCES 99 APPENDIX 105

    [1]. News, Mercury. International Energy Agency & Associated Press. San Jose : San Jose Mercury News, 2000.
    [2]. Administration, U.S. Energy Information. International Energy Outlock 2011. Independent Statistic and Analysis. [Online] U.S. Departement of Energy, September 19, 2011. http://www.eia.gov/forecasts/ieo/index.cfm.
    [3]. 21, REN. Renewable Energy Policy Network for the 21st Century. Paris : s.n., 2010.
    [4]. Michaels, Patricia A. Green Nature. Wave Energy in Oregon. [Online] 2011. http://greennature.com/article697.html.
    [5]. Wikipedia. Ocean Current. Wikipedia Free Encyclopedia. [Online] December 22, 2011. http://en.wikipedia.org/wiki/Ocean_current.
    [6]. Ruiz, Manases Tello. Dynamics and Hydrodynamics For Floating Wave Energy Converters. Lisbon : s.n., 2010. p. Pages 1.
    [7]. Surbakti, Heron. Pasang Surut. [Online] September 3, 2007. http://surbakti77.wordpress.com/.
    [8]. Wikipedia. Ocean Current. Wikipedia Free Encyclopedia. [Online] December 22, 2011. http://en.wikipedia.org/wiki/Ocean_current.
    [9]. Mårten Grabbe, Urban Lundin, and Mats Leijon. Ocean Energy. Sweden : Uppasala University.
    [10]. Commission, European. SEAFLOW - World’s first pilot project for the exploitation of marine currents at a commercial scale. Europe : European Commission, 2005. 21616.
    [11]. Life Cycle Assessment (LCA) of a marine current turbine for cleaner energy production. Fausto Cavallaro, Domenico Coiro. Napoly : University of Naples.
    [12]. Renewable energy in Taiwan: Its developing status and strategy. Falin Chen, Shyi-Min Lu, Yi-Lin Chang. Hsinchu : Science Direct, 2007.
    [13]. Upper-Ocean Currents Around Taiwan. W.D.Liang, T.Y Tang, Y.J. Yang, M.T. Ko, W.S. Chuang. Taiwan : Elsevier Science Ltd, 2002.
    [14] Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications a Technology Status Review. M.J Khan, G. Bhuyan, M.T. Iqbal, J.E. Quaicoe. Cananda : s.n., 2009.
    [15] Pan, Annex. Planning for Micro Renewables Annex to PAN 45 Rene. The Scottish Goverment. [Online] 2006. http://www.scotland.gov.uk/Publica tions/2006/10/03093936/2.
    [16]. Emil Bedi, CANCEE and Hakan Falk. Tidal Power Plants. Energy Saving Now. [Online] 2000. http://energy.saving.nu/hydroenergy/tidal. shtml.
    [17]. Rehana Jamani, Sarah Masotti, and Molly Scott. Tidal Energy. [Online] 2012. http://scsenergygeneration.wikispaces.com/Tidal+Energy.
    [18] Atom. Fraudulent “4 Rivers Project” Budget Plan. Wetlands Campaign - KFEM/FoE Korea. [Online] 2009. http://koreawetlands.blogspot.com/ 2009 _ 11_01_archive.html.
    [19]. Tidal Delay® Tidal Power Generation. Hastings, Steve. Melbourne : Woodshed Technologies Pty Ltd.
    [20]. Matty. Energy and the Environment-A Coastal Perspective. [Online] Mei 22,2010.http://coastalenergyandenvironment.web.unc.edu/ocean-energy-generating-technologies/wave-energy/oscillating-water-column/.
    [21]. Luc Hamilton. AWS Ocean Energy Ltd. [Online] October 25, 2006. http://ec.europa.eu/research/energy/pdf/gp/gp_events/ocean_energy/1200_aws-mkii_en.pdf.
    [22] Power In Canada. Hydrodynamic Systems. [Online] http://coppercanada.ca /electrical_wave_power/electrical_wave_powerS4.htm.
    [23]. Overtopping performance of Sea wave Slot cone . Lucia Margheritini, Diego Vicinanza, Jens Peter Kofoed. s.l. : Thomas Telford , 2008.
    [24]. Power, Aquamarine. Aquamarine Powe. Clean Reliable Energy that Doesn’t Cost the Earth. [Online] May 2007. www.aquamerine.com
    [25]. Chakrabarti S.K., K.C. Subrata. Oshore Engineering. Handbook of Oshore Engineering. Elsevier London : s.n., 2005, Page 79-131.
    [26]. Marine current energy devices: Current status and possible future applications in Ireland. Fergal O. Rourke, Fergal Boyle, Anthony Reynolds. Ireland : s.n., 2009.
    [27]. Marine Current Energy Devices: Current Status and Possible Future Applications in Ireland. Fergal O'Rourke, Fergal Boyle, Anthony Reynolds. Ireland : Dublin Institute of Technology, 2010.
    [28]. Ocean Energy: Global Thecnology Development Status. Jahangir Khan, and Gouri S Bhuyan. Canada : s.n., 2009. T0104.
    [29]. Output Characteristic of Darrieus Water Turbine with Helical Blades for Tidal Current Generations. Mitsuhiro Shiro, Katsuyuki Suzuki, Seiji Kiho. Japan : s.n., 2002. ISSN 1098-6189.
    [30]. Computational Fluid Dynamics Analysis of a Twisted Three Bladed H Darrieus Rotor. R. Gupta, and Agnimitra Biswas. India : National Institute of Technology Silchar, 2010.
    [31] Simulation and Evaluation of a Straight Bladed Darrieus Type Cross Flow Marine Turbine. S. Lain, C Osorio. Colombia : s.n., 2010.
    [32]. Simulation and Evaluation of a Straight-Bladed Darrieus-type Cross Flow Marine Turbine. S Lain, C Osorio. Cali (Colombia) : s.n., 2010.
    [33]. Simulation and Evaluation of a Straight-Bladed Darrieus-type Cross Flow Marine Turbine. S Lain, C Osorio. Cali (Colombia) : s.n., 2010.
    [34]. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions. Sylvain Antheaume, Thierry Maıtre, Jean-Luc Achard. France : Science Direct, 2007.
    [35]. Aerodynamic models for Darrieus Type Straight Bladed Vertical Axis Wind Turbines. Mazharul Islam, David S.-K. Ting, Amir Fartaj. Canada : Science Direct, 2006.
    [36]. Integrated Design and Realization of Turbine and Generator for Wave Energy Conversion. Chen Wei You. Taiwan : NCKU, 2011.
    [37]. Integrated Design and Realization of Turbine and Generator for Wave Energy Conversion. Chen Wei You. Taiwan : NCKU, 2011.
    [38] [Online] [Cited: February 15, 2012.] pilotportalusa.atspace.com.
    [39] Erdogan Madenci, Ibrahim Guven. The Finite Element Method and Applications in Engineering Using ANSYS. [book auth.] University of Arizona
    [40]. Comparison of Water Turbine Characteristics using Different Blades in Darrieus Water Turbines used Tidal Cuurent Generations. Mitsuhiro Shiro, Katsuyuki Suzuki, Seiji Kiho. Japan : s.n.
    [41] Paraschivoiu, O. Trifu, F. Saeed. H-DarrieusWind Turbine with Blade Pitch Control. Saudi Arabia : s.n., 2009.
    [42] The Otherpower Discussion Board. Fieldlines.com. [Online] http://www.fieldlines.com/board/index.php/topic,138783.html.
    [43]. Design of A Wave Energy System Using Onshore Oscillating Water Column. Chi-Chien Lin. Tainan : NCKU, 2009.
    [44]. Output Characteristics of Darrieus Water Turbine with Helical Blades for Tidal Current Generations. Mitsuhiro Shiono, Katsuyuki Suzuki, Seiji Kiho. Tokyo, Japan : s.n.

    下載圖示 校內:2014-02-16公開
    校外:2014-02-16公開
    QR CODE