| 研究生: |
高峻偉 Kao, Chun-Wei |
|---|---|
| 論文名稱: |
基於正交分頻多工訊號之感知無線電在多重路徑衰減通道中最佳與實用的頻譜偵測 Optimal and Practical Spectrum Sensing of OFDM Signals for Cognitive Radios over Multipath Fading Channels |
| 指導教授: |
卿文龍
Chin, Wen-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 感知無線電 、能量偵測器 、廣泛概似比試驗 、概似函數 、奈曼-皮爾生偵測器 、正交分頻多工 、頻譜偵測 |
| 外文關鍵詞: | Cyclic Prefix (CP), Energy Detector, Generalized Log-Likelihood Ratio Test (GLRT), Likelihood Function, Neyman-Pearson Detector, Orthogonal Frequency Division Multiplexing (OFDM), Spectrum Sensing |
| 相關次數: | 點閱:121 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儘管正交分頻多工系統(orthogonal frequency division multiplexing, OFDM)在通訊系統中為有前景的技術,然而感知無線電在多重路徑衰減通道中最佳與實用的OFDM頻譜偵測仍是重要且具挑戰性的議題。本篇論文提出OFDM訊號新穎和最佳奈曼-皮爾生(Neyman-Pearson, NP)偵測方法。欲偵測OFDM訊號,對數概似函數試驗(log-likelihood function test)設計為利用重複的循環字首(cyclic prefix, CP)之相關性,而不需要額外的領航符元(pilot symbol)。分析結果說明,接收訊號的對數概似比(log-likelihood ration test)等於對數概似函數加上能量偵測器的對數概似比,進而對奈曼-皮爾生偵測器更深入的了解。由於有許多未知參數需要解決,我們也提出實用的廣泛概似比試驗(generalized log-likelihood ratio test, GLRT)。為在多重路徑衰減通道中達到良好效能,獲得通道獨立之廣泛概似比(CI-GLRT)為重要的,我們利用相關係數的互補特性推導出與多重路徑通道功率延遲剖面獨立的相關係數估計。此外我們也利用韋伯分析(Weibull analysis)設定通道獨立之廣泛概似比的偵測門檻值。模擬證實所提出偵測器的優點。
Despite the promising technology of orthogonal frequency division multiplexing (OFDM) in communication systems, the optimal and practical spectrum sensing of OFDM signals for cognitive radio (CR) over multipath fading channels remains an important and challenging issue. This thesis presents a novel and optimal Neyman-Pearson (NP) detection scheme of OFDM signals. To detect the OFDM signal, log-likelihood (LL) function test is formulated without requiring additional pilot symbols by using the correlation characteristics of the redundancy of cyclic prefix (CP). Analytical results indicate that the LL ratio of received samples is equivalent to their LL function plus LL ratio of energy detector, subsequently allowing us to gain insights on the Neyman-Pearson detector. Since there are many unknown parameters need to be resolved, we also present a practical generalized log-likelihood ratio test (GLRT). To obtain a channel-independent GLRT (CI-GLRT), which is important for achieving a good performance over multipath fading channels, we employ the complement property of the correlation coefficient to derive an estimation of correlation coefficient independent of multipath channel profiles. Moreover, we also use Weibull analysis to set the detection threshold of CI-GLRT. Simulations confirm the advantages of the proposed detector.
[1]FCC,"Spectrum Plolicy Task Force Report,"ET Docker 02-155,Nov.2002.
[2]I.F. Akyildiz, W.Y. Lee, M.C. Vuran et al.,"NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,"Computer Networks,vol.50,no.13,pp.2127-2159, 9/15/,Sep. 2006.
[3]FCC,"Notice of proposed rule making and order,"ET Docket No 03-222,Dec.2003.
[4]S. Haykin,"Cognitive radio: brain-empowered wireless communications,"IEEE J.Sel. Areas Commun.,vol.23,no.2,pp. 201-220,Feb.2005.
[5]F.K. Jondral, "Software-defined radio-basic and evolution to cognitive radio," EURASIP J. Wireless Commun. and Networking,Apr.2005.
[6]X. Li, B.S. Chen, C.M. Liu et al.,"Spectrum modelling and regrowth for 4G wireless signals,"Electroni. Lett.,vol.48, no.4,pp.244-245,Feb.2012.
[7]H. Mahmoud, T. Yucek, and H. Arslan,"OFDM for cognitive radio: merits and challenges,"IEEE Wireless Commun.,vol.16, no.2,pp.6-15,Apr.2009.
[8]M. Jun, G.Y. Li, and J. Biing Hwang,"Signal Processing in Cognitive Radio,"in Proc.IEEE Signal Process.,vol.97,no.5,pp.805-823,May 2009.
[9]A. Sahai, N. Hoven, and R. Tandra,"Some Fundamental Limits on Cognitive Radio,"in Proc. Allerton Conf.Commun.,Control, and Computing,Oct. 2004.
[10]S.J. Shellhammer,"Spectrum Sensing in IEEE 802.22,"in Proc. CIP,pp.1-6,Jun.2008.
[11]H. Sun, D.I. Laurenson, and C.X. Wang,"Computationally Tractable Model of Energy Detection Performance over Slow Fading Channels,"IEEE Commun. Lett.,vol.14,no.10,pp.924-926,Oct. 2010.
[12]H. Urkowitz,"Energy detection of unknown deterministic signals,"in Proc.IEEE,vol.55,no.4,pp.523-531,Apr.1967.
[13]D. Cabric, S.M. Mishra, and R.W. Brodersen, "Implementation issues in spectrum sensing for cognitive radios," in Proc. IEEE Signal, syst.,Comput.,Vol.1,pp. 772-776,Nov. 2004.
[14]S. M. Kay,"Fundamental of Statistical Signal Processing vol. 2-detection theory,"Pretice-Hall PTR, 1998.
[15]R. Tandra, and A. Sahai,"Fundamental limits on detection in low SNR under noise uncertainty,"in Proc. 2005 Int. Conf. Wiress Netw., Commun. Mobile Comput.,vol.1,Jun.2005.
[16]A. Tani, and R. Fantacci,"A Low-Complexity Cyclostationary-Based Spectrum Sensing for UWB and WiMAX Coexistence With Noise Uncertainty,"IEEE Trans. Veh.Technol.,vol.59,no.6,pp.2940-2950,Jun. 2010.
[17]P.D. Sutton, K.E. Nolan, and L.E. Doyle,"Cyclostationary Signatures in Practical Cognitive Radio Applications,"IEEE J. Sel. Areas Commun.,vol.26,no.1,pp.13-24,Jan. 2008.
[18]G. Huang, and J.K. Tugnait,"On Cyclostationarity Based Spectrum Sensing Under Uncertain Gaussian Noise,"IEEE Trans. Signal Process.,vol.61,no.8,pp.2042-2054,Apr. 2013.
[19]S. Geirhofer, L. Tong, and B.M. Sadler, "A Measurement-Based Model for Dynamic Spectrum Access in WLAN Channels," in Proc. IEEE MILCOM,pp.1-7,Oct. 2006.
[20]S. Chaudhari, V. Koivunen, and H.V. Poor,"Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios,"IEEE Trans.Signal Process.,vol.57,no.7,pp.2690-2700,Jul. 2009.
[21]L. Zhongding, and F. Chin,"Sensing OFDM Systems Under Frequency-Selective Fading Channels,"IEEE Trans.Veh. Tech., vol.59,no.4,pp.1960-1968,May 2010.
[22]T.M. Schmidl, and D.C. Cox,
Robust frequency and timing synchronization for OFDM,
IEEE Trans.Commun.,vol.45,no.12,pp.1613-1621,Dec. 1997.
[23]Huawei Technologies and UESTC, "Sensing scheme for DVB-T,"IEEE Std.802.22-06/0127r2,Jul. 2006.
[24]E. Axell, and E.G. Larsson, "Optimal and Sub-Optimal Spectrum Sensing of OFDM Signals in Known and Unknown Noise Variance,"IEEE J. Sel. Areas Commun.,vol.29,no.2,pp.290-304,Feb. 2011.
[25]H.S. Chen, G. Wen, and D.G. Daut,"Spectrum sensing for OFDM systems employing pilot tones,"IEEE Trans.Wireless Commun.,vol.8,no.12,pp.5862-5870,Dec. 2009.
[26]M. Ronghong, O. Ser Wah, and W. Bo,"Spectrum Sensing for DVB-T Signals Employing Pilot Tones,"in Proc. IEEE VTC pp. 1-5, 2012.
[27]W.L. Chin,"ML Estimation of Timing and Frequency Offsets Using Distinctive Correlation Characteristics of OFDM Signals Over Dispersive Fading Channels,"IEEE Trans. Veh. Technol.,vol.60,no.2,pp.444-456,Feb. 2011.
[28]J.J. van de Beek, M. Sandell, and P.O. Borjesson,"ML estimation of time and frequency offset in OFDM systems," IEEE Trans.Signal Process.,vol.45,no.7,pp.1800-1805,Jul.1997.
[29]T.W. Anderson,Introduction to multivariate statistical analysis,New York: John Wiley and Son,1958.
[30]K. Bury,Statistical Distributions in Engineering,Cambridge University Press, 1999.
[31]S. Nadarajah,"A Review of Results on Sums of Random Variables," Acta Applicandae Mathematicae,vol.103,no.2,pp.131-140,Sep. 2008.
[32]J. Font-Segura and X. Wang,"GLRT-Based Spectrum Sensing for Cognitive Radio with Prior Information,IEEE Trans. on Commun.,vol.58,no.7,pp.2137-2146,Jul, 2010.
[33]A. Blad, E. Axell, and E.G. Larsson, "Spectrum sensing of OFDM signals in the presence of CFO: New algorithms and empirical evaluation using USRP," in Proc. IEEE Signal Process. Adv. Wireless Commun.,pp.159-163,Jun. 2012.
[34]Recommendation ITU-R M1225,"Guideline for Evaluation of Radio Transmission Technogies for IMT-2000," 1997.
[35]S. Shellhammer, and R. Tandra,"Performance of the power detector with noise uncertainty,"IEEE 802.22-06/0134r0, July 2006.
[36]R. Tandra, and A. Sahai,"SNR Walls for Signal Detection,"IEEE J. Sel. Topics Signal Process. vol.2,no.1,pp. 4-17,Feb. 2008.