| 研究生: |
李彥枝 Lee, Yen-Chen |
|---|---|
| 論文名稱: |
利用多段式消波護基減低海堤溯升之研究 Using a Vertically-stratified Porous Apron to Reduce Wave Run-up over a Seawall |
| 指導教授: |
凃盛文
Twu, S. W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 消波護基 、海堤溯升 |
| 外文關鍵詞: | wave run-up, apron |
| 相關次數: | 點閱:90 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇延續程(2002)之研究,進一步引用Twu et al. (2001)之理論,採用多段式透水結構物作為堤趾護基,在海堤前方設置多段式不同孔隙率之透水護基,進而試驗研究分析不同護基長度、高度以及不同段式,對於護基後方海堤溯升之影響。結果發現:安置單段式護基於海堤前,其溯升值會隨孔隙率增加而減少。如海堤坡度為1:2,平均每增加△b/h=1,溯升會較無護基時分別下降1.1%~2.9%( A型護基,孔隙率=0.41)、1.1%~3.0%( C型護基,孔隙率=0.45)、1.5%~3.6%( D型護基,孔隙率=0.77)、1.6%~4.0%( E型護基,孔隙率=0.9)。海堤坡度改變為1:3,溯升值較小,但不會改變此現象。
若是將單段式護基改為雙段式,則會進一步減少溯升,在坡度1:2之海堤前,將單段式D型護基改變為雙段式F型(孔隙率1=0.77、孔隙率2=0.41)或G型護基(孔隙率1=0.77、孔隙率2=0.45),平均每增加護基長度△b/h=1,溯升會進一步下降約0.8%~1.5%。若是將單段式E型護基改變為雙段式H型(孔隙率1=0.9、孔隙率2=0.41)或I型護基(孔隙率1=0.9、孔隙率2=0.45)或J型護基(孔隙率1=0.9、孔隙率2=0.77),平均每增加護基長度△b/h=1,溯升會進一步下降約1.3%~2.2%。海堤坡度改變為1:3,溯升值較小,但仍會進一步分別下降約0.2%~1.8%、1%~3.5%。
若是將雙段式護基改為三段式,則溯升值會進一步減少,在坡度1:2之海堤前,將雙段式J型護基(孔隙率1=0.9、孔隙率2=0.77)改變為三段式K型(孔隙率1=0.9、孔隙率2=0.77、孔隙率3=0.41)或L型護基(孔隙率1=0.9、孔隙率2=0.77、孔隙率3=0.45),平均每增加護基長度△b/h=1,溯升會進一步下降約0.3%~1%。海堤坡度改變為1:3,則約進一步減少0.2%~2.3%。
結果顯示:利用孔隙材料當作海堤前之護基,孔隙率愈大愈能降低溯升值,且分段式不同孔隙率之護基較單段式為佳,段數愈多愈有效。
This paper is aimed to continue the efforts of Chen (2002), trying to verify the theory developed by Twu et al. (2001). This work is performed by conducting experimental tests on wave run-up over a seawall with various aprons installed in front of the seawall. The aprons are made of porous material with different length, height and number of slices. It is shown that the wave run-up over the seawall decreases with increasing porosity if a single-sliced apron is used.
However if a double-sliced is adopted to replace a single-sliced apron, the wave run-up can be reduced further. For instance, if an apron of double-sliced F-type apron (porosity(1)=0.77, porosity(2)=0.41) or G-type (porosity(1)=0.77, porosity(2)=0.45) is used rather than a single-sliced D-type (porosity=0.77) in front of the seawall with slope of 1:2, the wave run-up can be reduced by 0.8%~1.5% for an increase of △b/h=1. Similarly, if a double-sliced H-type (porosity(1)=0.90, porosity(2)=0.41) or I-type (porosity(1)=0.90,porosity(2)=0.45) or J-type (porosity(1)=0.90, porosity(2)=0.77) is used instead of a single-sliced E-type (porosity=0.9), then the wave run-up would be reduced by 1.3%~2.2% for an increase of △b/h=1. For a seawall with slope 1:3, the reduction in wave run-up would be 0.2%~1.8%、1%~3.5%, respectively in the pervious two cases。
Moreover, the wave run-up over the seawall can be further reduced if a triple-sliced apron is employed. For instance, if an apron of triple-sliced K-type (porosity(1)=0.9、porosity(2)=0.77、porosity(3)=0.41) or L-type (porosity(1)=0.9、porosity(2)=0.77、porosity(3)=0.45) is installed in front of a seawall with slope of 1:2. The wave run-up could be reduced by 0.3%~1% for an increase of △b/h=1, as compared to a double-sliced one (J-type). For a seawall with slope 1:3, the reduction in wave run-up would be 0.2%~2.3%.
The results show that by using the porous material as an apron in front of seawall, wave run-up over the seawall can be reduced and the reduced level is increased with the increase of porosity and the number of vertically-stratified slices.
1.凃盛文、程偉傑、劉正琪 (2002) “利用孔隙護坦減低海堤溯上高之研究”, 第二十四屆海洋工程研討會論文集,pp. 229-235。
2.凃盛文、許文鴻、劉正琪(1999)"多目標離岸潛堤之研究",第二十一屆海洋工程研討會論文集,pp. 183-190。
3.郭晉安、簡仲和 (2002) “砂質底床上海堤溯上與越波量之研究”, 第二十四屆海洋工程研討會論文集,pp. 307-314。
4.程偉傑 (2002) “利用消波護基減低海堤溯上高之研究” ,國立成功大學水利及海洋工程學系,九十學年度碩士論文。
5.陳震遠 (2001) “大粒徑孔隙結構物內阻力特性之研究” 國立中山大學海洋環境及工程學系研究所,八十九學年度碩士論文。
6.陳震遠、李忠潘 (2001) “孔隙結構物內阻力特性之研究”,第二十五屆中華民國力學學會年會暨全國力學會議,逢甲大學,中華民國九十年十二月十五、十六日。
7.Burcharth, H. F. and O. H. Andersen (1995) ”On the one-dimensional steady and unsteady porous flow equations”, Coastal Engineering, Vol. 24, pp. 233-257.
8.De Rouck, J., P. Troch , B. Van de Walle and L. Van Damme, (2000) “The optimisation of crest level design of sloping coastal structures through prototype monitoring and modelling OPTICREST”, The European Conference on Marine Science and Ocean Technology (EurOcean 2000), Hamburg, Germany.
9.Dick, T. M. and A. Brebner (1968) “Solid and Permeable submerged breakwaters”, Proceedings of 11th Coastal Engineering Conference, ASCE, pp. 1141-1158.
10.Grüne, J. (1982) “Wave run-up caused by natural storm surge waves”, Proc., 18th Conf. on Coast. Engrg., ASCE, pp. 785-803.
11.Grüne, J. and Z. Wang (2000) “Wave run-up on sloping sea-dikes and revetments”, Proc., 27th Conf. on Coast. Engrg., ASCE, pp. 2044-2057.
12.Hashimoto, H. (1973) “An experimental study on irregular wave run-up on a coastal dike”, Coast. Engrg. In Japan, 16, pp. 123-136.
13.Hegde, A. V. and R. P. Srinivas (1995) “Effect of core porosity on stability and run-up of breakwaters”, Ocean Engineering, 22, pp. 519-526.
14.Hunt, I. A. (1959) “Design of seawalls and breakwaters”, J. Waterways Div., ASCE, pp. 123–152.
15.IPCC (2001) “Climate Change 2001: The Scientific Basis”, the Working Group I contribution to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).
16.Iwagaki, Y., A. Shima and M. Inoue (1965) “Effects of wave height and sea water level on wave overtopping and wave run-up”, Coast. Engrg. In Japan, 8, pp. 141-151.
17.Jamieson, W. W., and Mansard, E. P. D. (1987) “An efficient upright wave absorber”, Proc. Conf. on Coast. Hydrodyn., pp. 124-139.
18.Lean, G. H. (1967) “A simplified theory of permeable wave absorbers”, J. Hydraulic Research, 5, pp. 15-30.
19.Le Méhauté, B. (1972) “Progressive wave absorber”, J. Hydr. Res., Delft, Vol. 10, pp. 153-169.
20.Losada, I. J., M. A. Losada and A. Baquerizo (1993) “An analytic method to evaluate the efficiency of porous screens as wave dampers”, Applied Ocean Research, Vol. 15, pp. 207-215.
21.Mase, H. (1989) “Random wave run-up height on gentle slope”, J. Waterway, Port, Coast. and Ocean Engrg., 115, pp. 649-661.
22.Mase, H. and Y. Iwagaki (1984) “Run up of random wave on gentle slopes”, Proc., 19th Conf. on Coast. Engrg., ASCE, pp. 593-609.
23.Meer, J. W. and C. M. Stam (1992) “Wave run-up on smooth and rock slopes of coastal structure”, J. Waterway, Port, Coast. And Ocean Engrg., 118, pp. 534-550.
24.Rojanakamthorn, S., M. Isobe and A. Watanabe (1989) "A mathematical model of wave transformation over a submerged breakwater", Coastal Engineering in Japan, Vol. 32, No. 2, pp. 209-234.
25.Sollitt, C. K. and R. H. Cross(1972)”Wave transmission through permeable breakwaters”, Proceedings of the 13th International Conference on Coastal Engineering, Vancouver, pp. 1827-1846.
26.Sparboom, U., J. Grüne, S. Groshe and M. Haidekker (1990) “Full-scale measurements of wave run-up at sea dikes”, Proc. 22th Conf. on Coast. Engrg., ASCE, pp. 895-908.
27.Sulisz, W. (1985) “Wave reflection and transmission at permeable breakwaters of arbitrary cross-section”, Coastal Engineering, Vol. 9, pp. 371-386.
28.Twu, S. W. and C. C. Chieu (2000) “A highly wave dissipation offshore breakwater”, Ocean Engineering, Vol. 27, pp. 315-330.
29.Twu, S. W., C. C. Liu and W. H. Hsu (2001) "Wave damping characteristics of deeply submerged breakwaters", Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 127, No. 2, pp. 97-105.
30.Twu, S. W. and Y. T. Wang (1994) “A computational model of the wave absorption by the multi-layer porous media”, Coastal Engineering, Vol. 24, pp. 97-109.
31.Waal, J. P. and J. W. Meer (1992) “Wave run-up and overtopping on coastal structures”, Proc. 23rd Conf. on Coast. Engrg., ASCE, pp. 1758-1771.
32.Wang, Z. and J. Grüne (1996) “Wave run-up on revetments with composite slopes”, Proc. 25th Conf. on Coast. Engrg., ASCE, pp. 1008-1021.
33.Ward, J. C. (1964) “Turbulent flow in porous media”, J. of the Hydraulics Division, ASCE.
34.Yamamoto, Y. and K. Horikawa (1992) “New methods to evaluate wave run-up height and overtopping rate”, Proc. 23rd Conf. on Coast. Engrg., ASCE, pp. 1734-1747.
35.Yu, Ziping and A. T. Chwang(1994)"Wave motion through porous structure", Journal of Engineering Mechanics, ASCE, Vol. 120, No. 5, pp. 989-1008.